【题目】“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买两种型号的垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回的设备日处理能力不低于140吨.
(1)请你为该景区设计购买两种设备的方案;
(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?
【答案】(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.
【解析】(1)设该景区购买A种设备为x台、则B种设备购买(10-x)台,其中 0 ≤x ≤10,根据购买的设备日处理能力不低于140吨,列不等式,求出解集后再根据x的范围以及x为整数即可确定出具体方案;
(2)针对(1)中的方案逐一进行计算即可做出判断.
(1)设该景区购买设计 A型设备为x台、则 B型设备购买(10-x)台,其中 0 ≤x ≤10,
由题意得:12x+15(10-x)≥140,
解得x≤ ,
∵0 ≤x ≤10,且x是整数,
∴x=3,2,1,0,
∴B型相应的台数分别为7,8,9,10,
∴共有4种方案:
方案一:A型设备 3 台、B型设备 7 台;
方案二:A型设备 2 台、B型设备 8 台;
方案三:A型设备 1 台、B型设备 9 台;
方案四:A型设备 0 台、B型设备 10 台.
(2)方案二费用最少,理由如下:
方案一购买费用: 3 ×3+4.4 ×7=39.8 (万元)<40 (万元),∴费用为 39.8(万元);
方案二购买费用: 2 ×3+4.4 ×8=41.2 (万元)>40 (万元),
∴ 费用为 41.2 ×90%=37.08(万元);
方案三购买费用:3 ×1+4.4 ×9=42.6 (万元)>40 (万元),
∴ 费用为 42.6 ×90%=38.34(万元);
方案四购买费用:4.4 ×10=44 (万元)>40 (万元), ∴ 费用为 44 ×90%=39.6(万元).
∴方案二费用最少,即A型设备2台、B型设备8台时费用最少.
科目:初中数学 来源: 题型:
【题目】快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留,然后按原路原速返回,快车与慢车晚到达甲地.快慢两车距各自出发地的路程与所用的时间的关系如图所示.
(1)甲乙两地之间的路程为_________________;快车的速度为_________________;慢车的速度为______________;
(2)出发________________,快慢两车距各自出发地的路程相等;
(3)快慢两车出发______________相距.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中∠ABC=90°,,AB=4 cm, BC=3cm,动点P以3cm/s的速度由A向C运动,动点Q同时以1cm/s的速度由B向CB的延长线方向运动,连PQ交AB于D,则当运动时间为____s时,△ADP是以AP为腰的等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A、B两点的坐标分别为(0,4),(0,2),点P为x轴正半轴上一动点,过点A作AP的垂线,过点B作BP的垂线,两垂线交于点Q,连接PQ,M为线段PQ的中点.
(1)求证:A、B、P、Q四点在以M为圆心的同一个圆上;
(2)当⊙M与x轴相切时,求点Q的坐标;
(3)当点P从点(1,0)运动到点(2,0)时,请直接写出线段QM扫过图形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数的图像与反比例函数的图像交于点和点,与轴交于点.
(1)反比例函数的表达式 ;一次函数的表达式 .
(2)若在轴上有一点,其横坐标是1,连接,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:
三角形的直角边长/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
阴影部分的面积/ | 398 | 392 | 382 | 368 | 350 | 302 | 272 | 200 |
(1)在这个变化过程中,自变量、因变量各是什么?
(2)请将上述表格补充完整;
(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积是怎样变化的?
(4)设等腰直角三角形的直角边长为,图中阴影部分的面积为,写出与的关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知AC是菱形ABCD的对角线,∠BAC=60°,点E是直线BC上的一个动点,连接AE,以AE为边作菱形AEFG,并且使∠EAG=60°,连接CG,当点E在线段BC上时,如图1,易证:AB=CG+CE.
(1)当点E在线段BC的延长线上时(如图2),猜想AB,CG,CE之间的关系并证明;
(2)当点E在线段CB的延长线上时(如图3),直接写出AB,CG,CE之间的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两人做掷一个均匀小立方体的游戏,立方体的每个面上分别标有数字1,2,3,4,5,6,任意掷出小立方体后,若朝上的数字小于3,则甲获胜;若朝上的数字大于3 ,则乙获胜.你认为这个游戏对甲乙双方公平吗?为什么?你能不能就上面的小立方体设计一个较为公平的游戏?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图,在中,是高,是角平分线,当,,则____;
(2)若和的度数分别用字母和来表示(),你能找到与和之间的关系吗? ______.(请直接写出你发现的结论)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com