【题目】如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以 cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.
(1)当P异于A、C时,请说明PQ∥BC;
(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?
【答案】
(1)解:∵四边形ABCD是菱形,且菱形ABCD的边长为2cm,
∴AB=BC=2,∠BAC= ∠DAB,
又∵∠DAB=60°(已知),
∴∠BAC=∠BCA=30°;
如图1,连接BD交AC于O.
∵四边形ABCD是菱形,
∴AC⊥BD,OA= AC,
∴OB= AB=1(30°角所对的直角边是斜边的一半),
∴OA= (cm),AC=2OA=2 (cm),
运动ts后, ,
∴
又∵∠PAQ=∠CAB,
∴△PAQ∽△CAB,
∴∠APQ=∠ACB(相似三角形的对应角相等),
∴PQ∥BC(同位角相等,两直线平行)
(2)解:如图2,⊙P与BC切于点M,连接PM,则PM⊥BC.
在Rt△CPM中,∵∠PCM=30°,∴PM= PC=
由PM=PQ=AQ=t,即 =t
解得t=4 ﹣6,此时⊙P与边BC有一个公共点;
如图3,⊙P过点B,此时PQ=PB,
∵∠PQB=∠PAQ+∠APQ=60°
∴△PQB为等边三角形,∴QB=PQ=AQ=t,∴t=1
∴ 时,⊙P与边BC有2个公共点.
如图4,⊙P过点C,此时PC=PQ,即2 - t=t,∴t=3﹣ .
∴当1<t≤3﹣ 时,⊙P与边BC有一个公共点,
当点P运动到点C,即t=2时P与C重合,Q与B重合,也只有一个交点,此时,⊙P与边BC有一个公共点,
∴当t=4 ﹣6或1<t≤3﹣ 或t=2时,⊙P与菱形ABCD的边BC有1个公共点;
当4 ﹣6<t≤1时,⊙P与边BC有2个公共点.
【解析】(1)连接BD交AC于O,构建直角三角形AOB.利用菱形的对角线互相垂直、对角线平分对角、邻边相等的性质推知△PAQ∽△CAB;然后根据“相似三角形的对应角相等”证得∠APQ=∠ACB;最后根据平行线的判定定理“同位角相等,两直线平行”可以证得结论;(2)如图2,⊙P与BC切于点M,连接PM,构建Rt△CPM,在Rt△CPM利用特殊角的三角函数值求得PM= PC= ,然后根据PM=PQ=AQ=t列出关于t的方程,通过解方程即可求得t的值; 如图3,⊙P过点B,此时PQ=PB,根据等边三角形的判定可以推知△PQB为等边三角形,然后由等边三角形的性质以及(2)中求得t的值来确定此时t的取值范围;
如图4,⊙P过点C,此时PC=PQ,据此等量关系列出关于t的方程,通过解方程求得t的值.
科目:初中数学 来源: 题型:
【题目】我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个数值转换器.
(1)当输入x=25时,求输出的y的值;
(2)是否存在输入x的值后,始终输不出y的值?如果存在,请直接写出所有满足要求的x值;如果不存在,请说明理由;
(3)输入一个两位数x,恰好经过三次取算术平方根才能输出无理数y,则x=________(只填一个即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A、B、C、D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).
(1)若折成的包装盒恰好是个正方体,试求这个包装盒的体积V;
(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一居民楼底部B与山脚P位于同一水平线上,小李在P处测得居民楼顶A的仰角为60°,然后他从P处沿坡角为45°的山坡向上走到C处,这时,PC=30m,点C与点A在同一水平线上,A、B、P、C在同一平面内.
(1)求居民楼AB的高度;
(2)求C、A之间的距离.
(精确到0.1m,参考数据: ≈1.41, ≈1.73, ≈2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项.以下是同学们整理的不完整的统计图:
根据以上信息完成下列问题:
(1)请将条形统计图补充完整;
(2)随机调查的游客有人;在扇形统计图中,A部分所占的圆心角是度;
(3)请根据调查结果估计在1500名游客中喜爱攀锦的约有人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解答题
(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE;
(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点. ①若CD=2PC时,求证:BP⊥CF;
②若CD=nPC(n是大于1的实数)时,记△BPF的面积为S1 , △DPE的面积为S2 . 求证:S1=(n+1)S2 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com