分析 在Rt△OA1B1中,由OA1=1、A1B1=$\sqrt{3}$OA1=$\sqrt{3}$,利用勾股定理可得出OB1=2,进而可得出点A2的坐标为(2,0),同理,即可求出点A3、A4、A5、A6的坐标,此题得解.
解答 解:在Rt△OA1B1中,OA1=1,A1B1=$\sqrt{3}$OA1=$\sqrt{3}$,
∴OB1=$\sqrt{O{{A}_{1}}^{2}+{A}_{1}{{B}_{1}}^{2}}$=2,
∴点A2的坐标为(2,0).
同理,可得出:点A3的坐标为(4,0),点A4的坐标为(8,0),点A5的坐标为(16,0),点A6的坐标为(32,0).
故答案为:(32,0).
点评 本题考查了一次函数图象上点的坐标特征、解直角三角形以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合解直角三角形,求出点A2、A3、A4、A5、A6的坐标是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com