精英家教网 > 初中数学 > 题目详情
14、如图,点E,C在BF上,AB=DE,∠ABC=∠DEF,请你补充一个条件
BC=EF
,或
BE=CF
,或
∠A=∠D
,或
∠ACB=∠F(只选一个即可)
,使△ABC≌△DEF.
分析:要使△ABC≌△DEF,由于已知AB=DE,∠ABC=∠DEF,则若添加BC=EF,BE=CF均可运用SAS来判定其全等;若添加∠A=∠D,∠ACB=∠F则利用AAS来判定其全等.
解答:解:∵AB=DE,∠ABC=∠DEF,
添加BC=EF,
∴△ABC≌△DEF.
故填BC=EF,BE=CF,∠A=∠D,∠ACB=∠F
点评:本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,点D、C在BF上,AB∥EF,∠A=∠E,BC=DF,求证AB=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点E,C在BF上,BE=FC,∠ABC=∠DEF=45°,∠A=∠D=90°.
(1)求证:AB=DE;
(2)若AC交DE于M,且AB=
3
,ME=
2
,将线段CE绕点C顺时针旋转,使点E旋转到AB上的G处,求旋转角∠ECG的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,点D、C在BF上,AC∥DE,∠A=∠E,BD=CF,
(1)求证:AB=EF.
(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•浦江县模拟)如图,点D、C在BF上,AB∥EF,BD=CF,请添上一个条件,使AC=DE成立,并证明.

查看答案和解析>>

同步练习册答案