【题目】如图,已知点A(1, )在反比例函数y= (x>0)的图象上,连接OA,将线段OA绕点O沿顺时针方向旋转30°,得到线段OB.
(1)求反比例函数的解析式;
(2)填空:
①点B的坐标是;
②判断点B是否在反比例函数的图象上?答;
③设直线AB的解析式为y=ax+b,则不等式ax+b﹣ <0的解集是 .
【答案】
(1)
解:∵点A(1, )在反比例函数y= (x>0)的图象上,
∴ = ,解得k= ,
∴反比例函数的解析式为y= (x>0)
(2)(1, );点B在反比例函数的图象上;0<x<1或x>
【解析】解:(2)①如图,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,
∵A(1, ),
∴OC=1,AC= ,
∴tan∠AOC= = ,OA=2,
∴∠AOC=60°,
∵将线段OA绕点O沿顺时针方向旋转30°,得到线段OB,
∴OB=2,∠BOD=30°,
∴BD= OB=1,OD= OB= ,
∴B(1, ),
所以答案是:(1, );
②∵ ×1= ,
∴点B在反比例函数的图象上,
所以答案是:点B在反比例函数的图象上;
③∵ax+b﹣ <0可化为ax+b< ,
∴不等式的解集为直线AB在反比例函数图象的下方,
∴0<x<1或x> ,
所以答案是:0<x<1或x> .
【考点精析】利用反比例函数的概念和反比例函数的图象对题目进行判断即可得到答案,需要熟知形如y=k/x(k为常数,k≠0)的函数称为反比例函数.自变量x的取值范围是x不等于0的一切实数,函数的取值范围也是一切非零实数;反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点.
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y= 与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).
(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知反比例函数y= (k常数,k≠1).
(1)若点A(2,1)在这个函数的图象上,求k的值;
(2)若在这个函数图象的每一个分支上,y随x的增大而增大,求k的取值范围;
(3)若k=9,试判断点B(﹣ ,﹣16)是否在这个函数的图象上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=﹣x+2经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线l平行于x轴,直线l从点C出发以每秒1个单位长度的速度沿y轴负半轴方向向点O运动,到点O停止,且分别交线段AC、线段BC、抛物线、y轴于点E、D、F(点F在对称轴的右侧)、H,当点D是线段EF的三等分点时,求t的值;
(3)如图②,在直线l运动的过程中,过点D作x轴的垂线交x轴于点G,四边形OHDG与△AOC重叠部分的面积为S,求S与t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣ x2+bx+c过点A(4,0),B(﹣4,﹣4).
(1)求抛物线的解析式;
(2)若点P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交抛物线及x轴于C、D两点.请问是否存在这样的点P,使PD=2CD?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=6,BC=4,将△ABC绕点A逆时针旋转得到△AEF,使得AF∥BC,延长BC交AE于点D,则线段CD的长为( )
A.4
B.5
C.6
D.7
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com