10£®¼ÆË㣺
£¨1£©$\frac{\sqrt{48}}{\sqrt{6}}$£»
£¨2£©$\sqrt{\frac{3}{5}}$¡Â$\sqrt{\frac{1}{30}}$£»
£¨3£©$\frac{\sqrt{3}}{\sqrt{7}}$£»
£¨4£©$\frac{2\sqrt{3}}{\sqrt{8}}$£»
£¨5£©$\frac{\sqrt{15}}{\sqrt{3x}}$£»
£¨6£©$\sqrt{\frac{b}{5}}$¡Â$\sqrt{\frac{b}{20{a}^{2}}}$£»
£¨7£©$\sqrt{27}$¡Á$\sqrt{50}$¡Â$\sqrt{6}$£®

·ÖÎö £¨1£©Ô­Ê½·ÖĸÓÐÀí»¯¼ÆËã¼´¿ÉµÃµ½½á¹û£»
£¨2£©Ô­Ê½ÀûÓöþ´Î¸ùʽ³ý·¨·¨Ôò¼ÆËã¼´¿ÉµÃµ½½á¹û£»
£¨3£©Ô­Ê½·ÖĸÓÐÀí»¯¼ÆËã¼´¿ÉµÃµ½½á¹û£»
£¨4£©Ô­Ê½·ÖĸÓÐÀí»¯¼ÆËã¼´¿ÉµÃµ½½á¹û£»
£¨5£©Ô­Ê½·ÖĸÓÐÀí»¯¼ÆËã¼´¿ÉµÃµ½½á¹û£»
£¨6£©Ô­Ê½ÀûÓöþ´Î¸ùʽ³ý·¨·¨Ôò¼ÆËã¼´¿ÉµÃµ½½á¹û£»
£¨7£©Ô­Ê½ÀûÓöþ´Î¸ùʽ³Ë³ý·¨Ôò¼ÆËã¼´¿ÉµÃµ½½á¹û£®

½â´ð ½â£º£¨1£©Ô­Ê½=$\sqrt{\frac{48}{6}}$=$\sqrt{8}$=2$\sqrt{2}$£»
£¨2£©Ô­Ê½=$\sqrt{\frac{3}{5}¡Á30}$=$\sqrt{18}$=3$\sqrt{2}$£»
£¨3£©Ô­Ê½=$\frac{\sqrt{3}¡Á\sqrt{7}}{\sqrt{7}¡Á\sqrt{7}}$=$\frac{\sqrt{21}}{7}$£»
£¨4£©Ô­Ê½=$\frac{2\sqrt{3}¡Á\sqrt{2}}{\sqrt{8}¡Á\sqrt{2}}$=$\frac{\sqrt{6}}{2}$£»
£¨5£©Ô­Ê½=$\frac{\sqrt{15}¡Á\sqrt{3x}}{\sqrt{3x}¡Á\sqrt{3x}}$=$\frac{3\sqrt{5x}}{3x}$=$\frac{\sqrt{5x}}{x}$£»
£¨6£©Ô­Ê½=$\sqrt{\frac{b}{5}•\frac{20{a}^{2}}{b}}$=|2a|£»
£¨7£©Ô­Ê½=$\sqrt{27¡Á50¡Â6}$=$\sqrt{225}$=15£®

µãÆÀ ´ËÌ⿼²éÁË·ÖĸÓÐÀí»¯£¬ÒÔ¼°¶þ´Î¸ùʽµÄ³Ë³ý·¨£¬ÊìÁ·ÕÆÎÕ¶þ´Î¸ùʽ³Ë³ý·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª|a-1|+$\sqrt{b+2}$=0£¬Çó$\sqrt{2a-b}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬Ð¡·½¸ñÊDZ߳¤Îª1µÄÕý·½ÐΣ¬ÔòËıßÐÎABCDµÄÖܳ¤Îª15+3$\sqrt{5}$+$\sqrt{26}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èç¹ûÒ»¸öÕý¾Å±ßÐεİ뾶ÊÇR£¬ÄÇôËüµÄ±ß³¤ÊÇ2Rsin20¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£® Èçͼ£¬AB=AC£¬¡ÏBAC=120¡ã£¬ABµÄ´¹Ö±Æ½·ÖÏß½»BCÓÚµãD£®
£¨1£©Çó¡ÏADCµÄ¶ÈÊý£»
£¨2£©ÇóÖ¤£ºDC=2DB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÒ»¸öÖ±½ÇÈý½ÇÐεÄÁ½ÌõÖ±½Ç±ß·Ö±ðΪ3$\sqrt{2}$ºÍ2$\sqrt{6}$£¬ÇóËüµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¼ÆË㣺
£¨1£©2$\sqrt{7}$-6$\sqrt{7}$+$\sqrt{8}$-$\sqrt{18}$£»
£¨2£©$\sqrt{45}$+$\sqrt{18}$-$\sqrt{8}$-$\sqrt{20}$£»
£¨3£©$\sqrt{80}$-$\sqrt{20}$+$\sqrt{5}$£»
£¨4£©7$\sqrt{2}$+3$\sqrt{8}$-5$\sqrt{50}$£»
£¨5£©$\sqrt{12}$-£¨$\sqrt{\frac{1}{3}}$-$\sqrt{\frac{1}{27}}$£©£»
£¨6£©2$\sqrt{12}$-6$\sqrt{\frac{1}{3}}$+3$\sqrt{48}$£»
£¨7£©$\frac{2}{3}$$\sqrt{9x}$+6$\sqrt{\frac{x}{4}}$-2x$\sqrt{\frac{1}{x}}$£»
£¨8£©x$\sqrt{\frac{1}{x}}$+$\sqrt{4y}$-$\frac{\sqrt{x}}{2}$+y•$\sqrt{\frac{1}{y}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬Ö±ÏßAB£¬CDÏཻÓÚµãO£¬ÇÒ¡Ï1=¡Ï2£¬ÒÑÖª¡Ï2£º¡Ï3=2£º5£¬Çó¡Ï4¡¢¡ÏAOCµÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2017½ì½­ËÕÊ¡ÎÞÎýÊоÅÄ꼶ÏÂѧÆÚµÚÒ»´ÎÄ£Ä⿼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

Èçͼ£¬¡÷ABCÈý¸ö¶¥µãµÄ×ø±ê·Ö±ðΪA£¨2£¬2£©£¬B£¨4£¬2£©£¬C£¨6£¬4£©£¬ÒÔÔ­µãOΪλËÆÖÐÐÄ£¬½«¡÷ABCËõСΪԭÀ´µÄÒ»°ë£¬ÔòÏ߶ÎACµÄÖеãP±ä»»ºóÔÚµÚÒ»ÏóÏÞ¶ÔÓ¦µãµÄ×ø±êΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸