【题目】张老师每天从甲地到乙地锻炼身体,甲、乙两地相距14千米,已知他步行的平均速度为80米/分,跑步的平均速度为200米/分,若他要在不超过10分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式( )
A.80x+200(10-x)≤1.4B.80x+200(10-x)≤1400
C.200x+80(10-x)≥1.4D.200x+80(10-x)≥1400
科目:初中数学 来源: 题型:
【题目】我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.
(1)图B可以解释的代数恒等式是 ;
(2)现有足够多的正方形和矩形卡片(如图C),试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为,并利用你所画的图形面积对进行因式分解.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,直线AB∥CD
(1)如图1,点E在直线BD的左侧,猜想∠ABE、∠CDE、∠BED的数量关系,并证明你的结论;
(2)如图2,点E在直线BD的左侧,BF、DF分别平分∠ABE、∠CDE,猜想∠BFD和∠BED的数量关系,并证明你的结论;
(3)如图3,点E在直线BD的右侧,BF、DF分别平分∠ABE、∠CDE;那么第(2)题中∠BFD和∠BED的数量关系的猜想是否仍成立?如果成立,请证明;如果不成立,请写出你的猜想,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点P(2x,3x-1)是平面直角坐标系上的点。
(1)若点P在第一象限的角平分线上,求x的值;
(2)若点P在第三象限,且到两坐标轴的距离之和为16,求x的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣2x+4交y轴于点A,交抛物线 于点B(3,﹣2),抛物线经过点C(﹣1,0),交y轴于点D,点P是抛物线上的动点,作PE⊥DB交DB所在直线于点E.
(1)求抛物线的解析式;
(2)当△PDE为等腰直角三角形时,求出PE的长及P点坐标;
(3)在(2)的条件下,连接PB,将△PBE沿直线AB翻折,直接写出翻折点后E的对称点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小凡与小光从学校出发到距学校5千米的图书馆看书,小光直接去图书馆, 小凡途中从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:
(1) 是描述小凡的运动过程(填或);
(2)小凡和小光先出发的是 ,先出发了 分钟;
(3)小凡与小光先到达图书馆的是 ,先到了 分钟;
(4)求小凡与小光从学校到图书馆的平均速度各是多少?(不包括中间停留的时间)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com