精英家教网 > 初中数学 > 题目详情

【题目】研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量? 操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.
活动结果:摸球实验活动一共做了50次,统计结果如下表:

球的颜色

无记号

有记号

红色

黄色

红色

黄色

摸到的次数

18

28

2

2

推测计算:由上述的摸球实验可推算:
(1)盒中红球、黄球各占总球数的百分比分别是多少?
(2)盒中有红球多少个?

【答案】
(1)解:由题意可知,50次摸球实验活动中,出现红球20次,黄球30次,

∴红球所占百分比为20÷50=40%,

黄球所占百分比为30÷50=60%,

答:红球占40%,黄球占60%


(2)解:由题意可知,50次摸球实验活动中,出现有记号的球4次,

∴总球数为8÷ =100,

∴红球数为100×40%=40,

答:盒中红球有40个


【解析】(1)根据表格数据可以得到50次摸球实验活动中,出现红球20次,黄球30次,由此即可求出盒中红球、黄球各占总球数的百分比;(2)由题意可知50次摸球实验活动中,出现有记号的球4次,由此可以求出总球数,然后利用(1)的结论即可求出盒中红球.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是(
A.3km/h和4km/h
B.3km/h和3km/h
C.4km/h和4km/h
D.4km/h和3km/h

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图EFAD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整

EFAD,(   

∴∠2=   .(两直线平行同位角相等

又∵∠1=∠2,(   

∴∠1=∠3.(   

ABDG.(   

∴∠BAC+   =180°(   

又∵∠BAC=70°,(   

∴∠AGD   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么,由此可知,B、C两地相距 m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠CAB+∠ABC=90°,AD平分∠CAB,与BC边交于点D,BE平分∠ABC与AC边交于点E。

(1)依题意补全图形,并猜想∠DAB+∠EBA的度数等于__________

(2)证明以上结论。

证明:∵ AD平分∠CAB,BE平分∠ABC,

∴∠DAB=∠CAB,

∠EBA=__________.

(理由:____________________

∵∠CAB+∠ABC=90°,

∴∠DAB+∠EBA=______×(∠______+∠______)=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知两直线l1 , l2分别经过点A(1,0),点B(﹣3,0),并且当两直线同时相交于y正半轴的点C时,恰好有l1⊥l2 , 经过点A、B、C的抛物线的对称轴与直线l1交于点K,如图所示.

(1)求点C的坐标,并求出抛物线的函数解析式;
(2)抛物线的对称轴被直线l1 , 抛物线,直线l2和x轴依次截得三条线段,问这三条线段有何数量关系?请说明理由;
(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC,AD是角平分线B=54°,C=76°.

(1)求∠ADB和∠ADC的度数

(2)DEAC,求∠EDC的度数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)27﹣16+(﹣7)﹣18;

(2)(﹣6)×(﹣)÷(﹣);

(3)()×60;

(4)﹣24+3×(﹣1)4﹣(﹣2)3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y =(2m+1) x+ m-3

(1) 若函数图象经过原点,m的值.

(2) 若函数图象在y轴的交点的纵坐标为-2,求m的值.

(3)若函数的图象平行直线y=-3x–3,求m的值.

(4)若这个函数是一次函数,y随着x的增大而减小,m的取值范围.

查看答案和解析>>

同步练习册答案