精英家教网 > 初中数学 > 题目详情
1.如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果要使彩条所占面积是图案面积的$\frac{19}{75}$,则竖彩条宽度为(  )
A.1cmB.1.5cmC.2cmD.2.5cm

分析 可设竖彩条的宽是xcm,则横彩条的宽是2xcm,根据彩条所占面积是图案面积的$\frac{19}{75}$,可列方程求解.

解答 解:设竖彩条的宽为xcm,则横彩条的宽为2xcm,则
(30-2x)( 20-4x)=30×20×(1-$\frac{19}{75}$),
整理得:x2-20x+19=0,
解得:x1=1,x2=19(不合题意,舍去).
答:竖彩条的宽度为1cm.
故选:A.

点评 本题考查的是一元二次方程的应用,设出横竖条的宽,以面积做为等量关系列方程求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.计算下列各式:
(1)4-6-8+10
(2)($\frac{1}{2}$-$\frac{3}{4}$+$\frac{1}{6}$)×(12)
(3)(-2)2×5-(-2.5)÷(-0.1)
(4)-22+(-24)÷(-4)-(-3)3×(-$\frac{2}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,抛物线y=-ax2+bx+5过点(1,2)、(4,5),交y轴于点B,直线
AB经过抛物线顶点A,交x轴于点C,请解答下列问题:
(1)求抛物线的解析式;
(2)点O在平面内,在第一象限内是否存在点P,使以A,B,P,Q为顶点的四边形是正方形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.在平面直角坐标系中,点P(2,-5)关于x轴对称的点坐标的是(2,5).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.关于x的方程x-2m=3x+4m与2-x=m的解互为相反数.
(1)求m的值;
(2)求这两个方程的解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.计算(-0.125)10×811的结果是(  )
A.-$\frac{1}{8}$B.$\frac{1}{8}$C.-8D.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
(1)($\frac{1}{4}$-$\frac{1}{6}$-$\frac{1}{12}$)×24
(2)-72+2×(-3)2+(-6)÷(-$\frac{1}{3}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.阅读理解:
两个三角形中有一个角相等或互补,我们称这两个三角形是共角三角形,这个角称为对应角.
(1)根据上述定义,判断下列结论,正确的打“√”,错误的打“×”.
①三角形一条中线分成的两个三角形是共角三角形.对
②两个等腰三角形是共角三角形.错
【探究】
(2)如图,在△ABC与△DEF中,设∠ABC=α,∠DEF=β
①当α=β=90°  时,显然可知:$\frac{{S}_{△ABC}}{{S}_{△DEF}}$=$\frac{AB•BC}{DE•EF}$
②当α=β≠90°时,亦可容易证明:$\frac{{S}_{△ABC}}{{S}_{△DEF}}$=$\frac{AB•BC}{DE•EF}$
③如图2,当α+β=180°(α≠β)时,上述的结论是否还能成立,若成立,请证明;若不成立,请举反例说明.
【应用】
(3)如图3,⊙O中的弦AB、CD所对的圆心角分别是72°、108°,记△OAB与△OCD的面积分别为S1,S2,请写出S1与S2满足的数量关系S1=S2
(4)如图4,?ABCD的面积为2,延长□ABCD的各边,使BE=AB,CF=2BC,DG=2CD,AH=3AD,则四边形EFGH的面积为25.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.已知在△ABC中,点D在边AC上,且AD:DC=2:1.设$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$.那么$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$.(用向量$\overrightarrow{a}$、$\overrightarrow{b}$的式子表示)

查看答案和解析>>

同步练习册答案