精英家教网 > 初中数学 > 题目详情

【题目】如图,将△ABC沿DEEF翻折,顶点AB均落在点O处,且EAEB重合于线段EO,若∠CDO+∠CFO=100°,则∠C的度数为(  )

A. 40° B. 41° C. 42° D. 43°

【答案】A

【解析】

连接AOBO.由题意知EA=EB=EO推出∠AOB=90°,OAB+∠OBA=90°,DO=DAFO=FB推出∠DAO=DOAFOB=FBO推出∠CDO=2DAOCFO=2FBO由∠CDO+∠CFO=100°,推出∠DAO+∠FBO=50°,由此即可解决问题

如图连接AOBO

由题意知EA=EB=EO∴∠AOB=90°,OAB+∠OBA=90°.

DO=DAFO=FB∴∠DAO=DOAFOB=FBO∴∠CDO=2DAOCFO=2FBO

∵∠CDO+∠CFO=100°,2DAO+2FBO=100°,∴∠DAO+∠FBO=50°,∴∠CAB+∠CBA=DAO+∠OAB+∠OBA+∠FBO=140°,∴∠C=180°﹣(CAB+∠CBA)=180°﹣140°=40°.

故选A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,边长分别为2和4的两个全等三角形,开始它们在左边重叠,大△ABC固定不动,然后把小△A′B′C′自左向右平移,直至移到点B′到C重合时停止,设小三角形移动的距离为x,两个三角形的重合部分的面积为y,则y关于x的函数图象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+EAF=180°,求证DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,ABC+DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S3.若S2=48,S3=9,则S1的值为(  )

A. 18 B. 12 C. 9 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一艘货船和一艘客船同时从港口A出发,客船每小时比货船多走5海里,客船与货船速度的比为4:3,货船沿东偏南10°方向航行,2小时后货船到达B处,客船到达C处,若此时两船相距50海里.

(1)求两船的速度分别是多少?

(2)求客船航行的方向.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=CBE=ACF,FDE=64°,DEF=43°,求△ABC各内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习过程中,对教材中的一个有趣问题做如下探究:

(习题回顾)已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=CEF;

(变式思考)如图2,在△ABC中,∠ACB=90°,CDAB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,则∠CFE与∠CEF还相等吗?说明理由;

(探究廷伸)如图3,在△ABC中,在AB上存在一点D,使得∠ACD=B,角平分线AECD于点F.ABC的外角∠BAG的平分线所在直线MNBC的延长线交于点M.试判断∠M与∠CFE的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°.若AC=a,求CI的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】试找出如图所示的每个正多边形的对称轴的条数,并填入表格中.

正多边形的边数

3

4

5

6

7

8

对称轴的条数

根据上表,请就一个正n边形对称轴的条数作一猜想.

查看答案和解析>>

同步练习册答案