【题目】某初一年级有500名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图),若要从身高在 , , 三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在 内的学生中选取的人数为 .
【答案】10
【解析】由已知中频率分布直方图的组距为10,
身高在[120,130),[130,140),[140,150]的矩形高为(0.1﹣0.005+0.035+0.020+0.010)=0.030,0.020,0.010
故身高在[120,130),[130,140),[140,150]的频率为0.30,0.20,0.10
故分层抽样的方法选取30人参加一项活动,
则从身高在[130,140)内的学生中选取的人数应为30× =10
故答案为:10
由已知中的频率分布直方图,根据各组矩形高之和×组距=1,结合已知中频率分布直方图的组距为10,我们易求出身高在[120,13),[130,140),[140,150]三组内学生的频率,根据分屋抽样中样本比例和总体比例一致的原则,我们易求出从身高在[130,140)内的学生中选取的人数.
科目:初中数学 来源: 题型:
【题目】已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.
试探究下列问题:
(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)
(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;
(3)如图3,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的对角线相交于点O,点O也是正方形A′B′C′O的一个顶点,两个正方形的边长都等于1,当正方形A′B′C′O绕顶点O转动时,两个正方形重叠部分的面积大小有什么规律?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举行“社会主义核心价值观”演讲比赛,学校对30名参赛选手的成绩进行了分组统计,结果如下表:
分数x(分) | 4≤x<5 | 5≤x<6 | 6≤x<7 | 7≤x<8 | 8≤x<9 | 9≤x<10 |
频数 | 2 | 6 | 8 | 5 | 5 | 4 |
由上可知,参赛选手分数的中位数所在的分数段为( )
A. 5≤x<6B. 6≤x<7C. 7≤x<8D. 8≤x<9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=﹣x2+bx+c与x轴交于A(2,0),B(﹣4,0)两点.
(1)求该抛物线的解析式;
(2)若抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
(3)在抛物线的第二象限图象上是否存在一点P,使得△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若不存,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为( ).
A.(﹣1,) B.(﹣2,)
C.(﹣,1) D.(﹣,2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com