【题目】如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,抛物线y=﹣(x﹣m)2+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.
(1)n=________(用含m的代数式表示),点C的纵坐标是________(用含m的代数式表示);
(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数解析式;
(3)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.
【答案】(1)﹣m+4 ;﹣ m2﹣m+4;(2)y=﹣(x﹣2)2+2;(3)m=1或﹣1或 或
【解析】
(1)由顶点在直线上得,求得当时,即可知点C的纵坐标;
(2)由矩形的性质结合可知DE与AB的交点P的坐标为,即可得出答案;
(3)①点C、D在抛物线上时,由可知对称轴为,即;②点C、E在抛物线上时,由和得,则4=﹣ (﹣2﹣m)2+(﹣m+4),解之可得答案.
解:(1)∵y=﹣ (x﹣m)2+n=﹣ x2+ mx﹣ m2+n,
∴顶点P(m,n),
∵P在直线y=﹣x+4上,
∴n=﹣m+4,
当x=0时,y=﹣ m2+n=﹣ m2﹣m+4,即点C的纵坐标为﹣ m2﹣m+4,
故答案为:﹣m+4,﹣ m2﹣m+4;
(2)解:∵四边形ABCD是矩形,
∴DE∥y轴,
∵CD=2,
∴当x=2时,y=2,即DE与AB的交点坐标为(2,2),
∴当点P在矩形BCDE的边DE上时,抛物线的顶点P的坐标为(2,2),
∴抛物线对应的函数解析式为y=﹣ (x﹣2)2+2
(3)解:如图①②,点C、D在抛物线上时,由CD=2可知对称轴为x=±1,即m=±1;
如图③④,点C、E在抛物线上时,
由B(0,4)和CD=2得E(﹣2,4),
则4=﹣ (﹣2﹣m)2+(﹣m+4),
解得:m1= ,m2= ,
综上所述,m=1或﹣1或 或
科目:初中数学 来源: 题型:
【题目】我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:
西瓜种类 | A | B | C |
每辆汽车运载量(吨) | 4 | 5 | 6 |
每吨西瓜获利(百元) | 16 | 10 | 12 |
(1)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,求y与x的函数关系式;
(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利达到预期利润25万元,应采取怎样的车辆安排方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB'交CD于点E,若AB=3cm,则线段EB′的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 人;
(2)补全条形统计图,并在图上标明相应的数据;
(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数y=(x>0)的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连接OB1、OB2、OB3,若图中三个阴影部分的面积之和为,则k= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从点A出发,以每秒1cm的速度沿AC运动;同时点Q从点C出发,以每秒2cm的速度沿CB运动,当Q到达点B时,点P同时停止运动.
(1)求运动几秒时△PCQ的面积为5cm2?
(2)△PCQ的面积能否等于10cm2?若能,求出运动时间,若不能,说明理由;
(3)是否存在某个时刻t,使四边形ABQP的面积最小?若存在,求出运动时间,若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y= -x+3与x轴,y轴分别相交于点B、C,经过B、C两点的抛物线与x轴的另一交点为A,顶点为P,且对称轴为直线x=2.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连结AC.请问在x轴上是否存在点Q,使得以点P、B、Q为顶点的三角形与△ABC 相似,若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的平面直角坐标系中,已知点A(﹣3,﹣3),点B(﹣1,﹣3),点C(﹣1,﹣1).
(1)画出△ABC;
(2)画出△ABC关于x轴对称的△A1B1C1,并写出A1点的坐标: ;
(3)以O为位似中心,在第一象限内把△ABC扩大到原来的两倍,得到△A2B2C2,并写出A2点的坐标: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(5,4),B(0,3),C(2,1).
(1)画出△ABC关于原点成中心对称的△A1B1C1,并写出点C1的坐标;
(2)画出将A1B1C1绕点C1按顺时针旋转90°所得的△A2B2C1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com