精英家教网 > 初中数学 > 题目详情
已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为,AC的延长线与⊙B的切线OD交于点D.
(1)求OC的长和∠CAO的度数;
(2)求过D点的反比例函数的表达式.

【答案】分析:(1)根据条件知道AC是圆的直径,所以长度为2,因为C的坐标已知,所以能求出OC的长度,根据勾股定理求出AO的长度,所以可求出角的度数.
(2)连接OB,过点D作DE⊥x轴于点E,根据题目所给的条件,求出D点的坐标,进而求出反比例函数的解析式.
解答:解:(1)∵⊙B经过原点O,∠AOC=90°,
∴AC是⊙B的直径,
∴AC=2.(1分)
又∵点A的坐标为(.0),
∴OA=.OC=.(2分)
∴sin∠CAO=
∴∠CAO=30°.(3分)

(2)连接OB,过点D作DE⊥x轴于点E.(4分)
∵OD为⊙B的切线,
∴OB⊥OD.∴∠BOD=90°
∴∠AOB=∠OAB=30°.
∴∠AOD=∠AOB+∠BOD=30°+90°=120°
在△AOD中,∠ODA=180°-120°-30°=30°=∠OAD
∴OD=OA=.(6分)
在Rt△DOE中,∠DOE=180°-120°=60°,
∴OE=OD•cos60°=.ED=OD•sin60°=,(7分)
∵点D在第二象限,
∴点D的坐标为.(8分)
设过点D的反比例函数表达式为,则
(10分)
点评:本题考查反比例函数的综合运用,本题考查了勾股定理的运用,以及三角函数的运用,反比例函数的确定等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(-
3
,0),AC的延长线与⊙B的切线OD交于点D.
(1)求OC的长和∠CAO的度数;
(2)求过D点的反比例函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(
3
,0)
,AC的延长线与⊙B的切线OD交于点D.
(1)求OC的长和∠CAO的度数;
(2)求过D点的反比例函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)对于正数x,规定f(x)=
x
1+x
,例如f(3)=
3
1+3
=
3
4
,f(
1
3
)=
1
3
1+
1
3
=
1
4

计算:f(
1
2009
)
+f(
1
2008
)+f(
1
2007
)+…+f(
1
3
)+f(
1
2
)+f(1)+f(2)+f(3)+…+f(2007)+f(2008)+f(2009)
(2)已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(-
3
,0)
,AC的延长线与⊙B的切线OD交于点D.求∠CAO的度数.

查看答案和解析>>

科目:初中数学 来源:2011年河南省南阳市宛城区中考数学一模试卷(解析版) 题型:解答题

已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为,AC的延长线与⊙B的切线OD交于点D.
(1)求OC的长和∠CAO的度数;
(2)求过D点的反比例函数的表达式.

查看答案和解析>>

同步练习册答案