精英家教网 > 初中数学 > 题目详情
2.估计$\sqrt{8}$+1的运算结果应在哪两个连续自然数之间(  )
A.1和2B.2和3C.3和4D.4和5

分析 先估算出$\sqrt{8}$的范围,即可得出答案.

解答 解:∵2<$\sqrt{8}$<3,
∴3<$\sqrt{8}$+1<4,
∴$\sqrt{8}$+1在3和4之间,
故选C.

点评 本题考查了估算无理数的大小,能估算出$\sqrt{8}$的范围是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,AB是⊙O的直径,AC与⊙O相切于点A,连接OC交⊙O于D,连接BD,若∠C=40°,则∠B=25度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)化简:$\frac{{a}^{2}-4}{a+2}$+a+2        
(2)解方程:$\frac{3}{x}$=$\frac{5}{x+2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.问题解决:边长为a的两个正方形(阴影部分)如图1所示摆放,则构成的大正方形面积可以表示为(a+a)2或4a2;边长为a,b的两个正方形(阴影部分)如图2所示摆放,大正方形面积可以表示为(a-b)2或a2-2ab+b2;将边长为a、b的两个正方形如图所示叠放在一起,借助图3中的图形面积试写出(a-b)2,a2,b2,ab这四个代数式之间的等量关系:(a-b)2=a2-2ab+b2

探究应用:(1)实际上有许多代数恒等式可以用图形的面积来表示,如图4,它表示了2m2+3mn+n2=(2m+n)(2m-n),请在下面左边的方框中画出一个几何图形,使它的面积是a2+4ab+3b2,并利用这个图形将a2+4ab+3b2进行因式分解.

提升应用:(2)阅读上面右边方框中的材料,根据你的观察,探究下面的问题:
①a2+b2-4a+4=0,则a=2,b=0;
②已知三角形ABC的三边长a,b,c都是整数,且满足2a2+b2-4a-6b+11=0,求三角形ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是(  )
A.x<2B.x<0C.x>0D.x>2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.计算:(π-$\sqrt{5}$)0+(-$\frac{1}{2}$)-2=5.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.3-$\sqrt{2}$的倒数是(  )
A.3+$\sqrt{2}$B.-3+$\sqrt{2}$C.$\frac{3+\sqrt{2}}{4}$D.$\frac{3+\sqrt{2}}{7}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.观察下列等式的变形规律:
a1=$\frac{1}{1+\sqrt{2}}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}-1$
a2═$\frac{1}{\sqrt{2}+\sqrt{3}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$
a3═$\frac{1}{\sqrt{3}+2}$=$\frac{2-\sqrt{3}}{(2+\sqrt{3})(2-\sqrt{3})}$=2-$\sqrt{3}$
a4═$\frac{1}{\sqrt{5}+2}$=$\frac{\sqrt{5}-2}{(\sqrt{5}+2)(\sqrt{5}-2)}$=$\sqrt{5}$-2

依照上述规律.求a1+a2+a3+…+a2017=-1-12$\sqrt{14}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.已知∠AOB=56°,ON平分∠AOB,OM平分∠AOD,∠BOD=3∠AOB,则∠MON=84°或96°.

查看答案和解析>>

同步练习册答案