Èçͼ1£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬Ãæ»ýΪS£®D1¡¢E1¡¢F1·Ö±ðÊÇ¡÷ABCÈý±ßÉϵĵ㣬ÇÒAD1=BE1=CF1=
1
2
AB£¬Á¬½ÓD1E1¡¢E1F1¡¢F1D1£¬¿ÉµÃ¡÷D1E1F1ÊǵȱßÈý½ÇÐΣ¬´Ëʱ¡÷AD1F1µÄÃæ»ýS1=
1
4
S£¬¡÷D1E1F1µÄÃæ»ýS1=
1
4
S£®
£¨1£©µ±D2¡¢E2¡¢F2·Ö±ðÊǵȱߡ÷ABCÈý±ßÉϵĵ㣬ÇÒAD2=BE2=CF2=
1
3
ABʱÈçͼ2£¬
¢ÙÇóÖ¤£º¡÷D2E2F2ÊǵȱßÈý½ÇÐΣ»
¢ÚÈôÓÃS±íʾ¡÷AD2F2µÄÃæ»ýS2£¬ÔòS2=
 
£»ÈôÓÃS±íʾ¡÷D2E2F2µÄÃæ»ýS2¡ä£¬ÔòS2¡ä=
 
£®
£¨2£©°´ÕÕÉÏÊö˼·̽Ë÷ÏÂÈ¥£¬²¢Ìî¿Õ£º
µ±Dn¡¢En¡¢Fn·Ö±ðÊǵȱߡ÷ABCÈý±ßÉϵĵ㣬ADn=BEn=CFn=
1
n+1
ABʱ£¬£¨nΪÕýÕûÊý£©¡÷DnEnFnÊÇ
 
Èý½ÇÐΣ»
ÈôÓÃS±íʾ¡÷ADnFnµÄÃæ»ýSn£¬ÔòSn=
 
£»ÈôÓÃS±íʾ¡÷DnEnFnµÄÃæ»ýSn¡ä£¬ÔòS¡än=
 
£®
¾«Ó¢¼Ò½ÌÍø
·ÖÎö£º£¨1£©ÓɵȱßÈý½ÇÐεÄÐÔÖʺÍÒÑÖªÌõ¼þ¿ÉÖ¤¡÷AD2F2¡Õ¡÷BE2D2¡Õ¡÷CF2E2£¬µÃD2E2=E2F2=F2D2ËùÒÔ¡÷D2E2F2ΪµÈ±ßÈý½ÇÐΣ®
£¨2£©£¨3£©ÓɵȱßÈý½ÇÐεÄÐÔÖʺÍÃæ»ý¹«Ê½¿ÉÇó£®
½â´ð£º½â£º£¨1£©¢Ù¡ß¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬¡àAB=BC=AC£¬¡ÏA=¡ÏB=60¡ã£¬£¨1·Ö£©
ÓÉÒÑÖªµÃAD2=
1
3
AB£¬BE2=
1
3
BC£¬CF2=
1
3
AC

¡àAF2=
2
3
AC£¬BD2=
2
3
AB
¡àAD2=BE2£¬AF2=BD2£¨2·Ö£©
¡÷AD2F2¡Õ¡÷BE2D2£¨3·Ö£©
¡àD2E2=F2D2
ͬÀí¿ÉÖ¤¡÷AD2F2¡Õ¡÷CF2E2
F2D2=E2F2£¨4·Ö£©
¡àD2E2=E2F2=F2D2
¡à¡÷D2E2F2ΪµÈ±ßÈý½ÇÐΣ»£¨5·Ö£©
¢ÚS2=
2
9
S
£»£¨6·Ö£©
S¡ä2=S-
2
9
S¡Á3=
1
3
S£¨7·Ö£©

£¨2£©ÓÉ£¨1£©¿ÉÖª£º¡÷DnEnFnµÈ±ßÈý½ÇÐΣ»£¨8·Ö£©
ÓÉ£¨1£©µÄ·½·¨¿ÉÖª£ºS2=
2
9
S
£¬S3=
3
16
S£¬¡­Sn=
n
(n+1)2
S
£»£¨9·Ö£©
S2¡ä=
1
3
S£¬S3¡ä=
7
16
S
¡­Sn¡ä=
n2-n+1
n2+2n+1
S
£®£¨10·Ö£©
µãÆÀ£º±¾Ì⿼²éÁ˵ȱßÈý½ÇÐεÈÐÔÖÊ£¬ºÍµÈ±ßÈý½ÇÐεÈÅжϣ¬ÒÔ¼°ÄڽӵȱßÈý½ÇÐεÄÃæ»ý¹æÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ1£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬Ãæ»ýΪ1£®D¡¢E¡¢F·Ö±ðÊÇ¡÷ABCÈý±ßÉϵĵ㣬ÇÒAD=BE=CF=
1
2
AB£¬Á¬½ÓDE£¬EF£¬FD£¬¿ÉµÃ¡÷DEF£¬²¢¼Ç¡÷DEFµÄÃæ»ýΪS1£»µ±AD=BE=CF=
1
3
ABʱ£¬Èçͼ2£¬²¢¼Ç¡÷DEFµÄÃæ»ýΪS2£»°´ÕÕÉÏÊö˼·̽Ë÷ÏÂÈ¥£¬µ±AD=BE=CF=
1
10
ABʱ£¬¡÷DEFµÄÃæ»ýS9=
 
£®
¾«Ó¢¼Ò½ÌÍø

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÄÏƽģÄ⣩ÔÚ¡÷ABCÖУ¬DΪACµÄÖе㣬½«¡÷ABDÈƵãD˳ʱÕëÐýת¦Á¡ã£¨0£¼¦Á£¼360£©µÃµ½¡÷DEF£¬Á¬½ÓBE¡¢CF£®
£¨1£©Èçͼ£¬Èô¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬BEÓëCFÓкÎÊýÁ¿¹Øϵ£¿Ö¤Ã÷ÄãµÄ½áÂÛ©r
£¨2£©Èô¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬µ±¦ÁµÄֵΪ¶àÉÙʱ£¬ED¡ÎAB£¿
£¨3£©Èô¡÷ABC²»ÊǵȱßÈý½ÇÐÎʱ£¬£¨1£©ÖнáÂÛÊÇ·ñÈÔÈ»³ÉÁ¢£¿Èô²»³ÉÁ¢£¬ÇëÌí¼ÓÒ»¸öÌõ¼þ£¬Ê¹µÃ½áÂÛ³ÉÁ¢£®£¨²»±ØÖ¤Ã÷£¬²»ÔÙÌí¼ÓÆäËüµÄ×ÖĸºÍÏ߶Σ©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£º¡ÑOÊÇ¡÷ABCµÄÍâ½ÓÔ²£¬µãMΪ¡ÑOÉÏÒ»µã£®
£¨1£©Èçͼ£¬Èô¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬BM=1£¬CM=2£¬ÇóAMµÄ³¤£»
£¨2£©Èô¡÷ABCΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬¡ÏBAC=90¡ã£¬BM=a£¬CM=b£¨ÆäÖÐb£¾a£©£¬Ö±½Óд³öAMµÄ³¤£¨Óú¬ÓÐa£¬bµÄ´úÊýʽ±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

̽Ë÷Ìâ
£¨1£©ÒÑÖª£ºÈçͼ1£¬¡÷ABCΪµÈ±ßÈý½ÇÐΣ¬DΪACÉÏÒ»µã£¬ÒÔBDΪһ±ß×÷µÈ±ß¡÷DBE£¬Á¬½ÓAE£¬ÊÔÈ·¶¨AC¡¢AD¡¢AEÖ®¼äµÄ¹Øϵ²¢Ö¤Ã÷ÄãµÄ²ÂÏ룮
£¨2£©Èç¹ûDΪACÑÓ³¤ÏßÉÏÒ»µã£¬Èçͼ2£¬ÊÔÈ·¶¨AC¡¢AD¡¢AEÖ®¼äµÄ¹Øϵ£¬²¢Ö¤Ã÷ÄãµÄ²ÂÏ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸