精英家教网 > 初中数学 > 题目详情
12.如图,菱形ABCD的边长为2,∠A=60°,以点B为圆心的圆与AD、DC相切,与AB、CB的延长线分别相交于点E、F,则图中阴影部分的面积为(  )
A.$\sqrt{3}$+$\frac{π}{2}$B.$\sqrt{3}$+πC.$\sqrt{3}$-$\frac{π}{2}$D.2$\sqrt{3}$+$\frac{π}{2}$

分析 设AD与圆的切点为G,连接BG,通过解直角三角形求得圆的半径,然后根据扇形的面积公式求得三个扇形的面积,进而就可求得阴影的面积.

解答 解:设AD与圆的切点为G,连接BG,
∴BG⊥AD,
∵∠A=60°,BG⊥AD,
∴∠ABG=30°,
在直角△ABG中,BG=$\frac{\sqrt{3}}{2}$AB=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$,AG=1,
∴圆B的半径为$\sqrt{3}$,
∴S△ABG=$\frac{1}{2}$×1×$\sqrt{3}$=$\frac{\sqrt{3}}{2}$
在菱形ABCD中,∠A=60°,则∠ABC=120°,
∴∠EBF=120°,
∴S阴影=2(S△ABG-S扇形)+S扇形FBE=2($\frac{\sqrt{3}}{2}$-$\frac{30π×3}{360}$)+$\frac{120×π×(\sqrt{3})^{2}}{360}$=$\sqrt{3}$+$\frac{π}{2}$.
故选A.

点评 此题主要考查了菱形的性质以及切线的性质以及扇形面积等知识,正确利用菱形的性质和切线的性质求出圆的半径是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.在△ABC中,CD⊥AB于D,若AC≠BC,∠A=32°,且$\frac{A{C}^{2}}{B{C}^{2}}$=$\frac{AD}{BD}$,则∠ABC为58或122°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连结A′C,则A′C长度的最小值是(  )
A.$\sqrt{7}$B.$\sqrt{7}-1$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,点E为正方形ABCD边延长线上一点,AE交CD于F点,FG∥AD交DE于G点,其中有△ABE∽△FCE,△EFG∽△EAD,请探求CF与FG的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于(  )
A.4$\sqrt{3}$B.6$\sqrt{3}$C.2$\sqrt{3}$D.8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一点为E,其顶点为F,对称轴与x轴的交点为H.
(1)求a、c的值.
(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.
(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P、Q、E为顶点的三角形与△POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图所示的几何体的俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,已知C,D是以AB为直径的半圆周上的两点,O是圆心,半径OA=2,∠COD=120°,则图中阴影部分的面积等于$\frac{2}{3}$π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,?ABCD中,点E,F在对角线BD上,且BE=DF,求证:
(1)AE=CF;
(2)四边形AECF是平行四边形.

查看答案和解析>>

同步练习册答案