A. | $\sqrt{3}$+$\frac{π}{2}$ | B. | $\sqrt{3}$+π | C. | $\sqrt{3}$-$\frac{π}{2}$ | D. | 2$\sqrt{3}$+$\frac{π}{2}$ |
分析 设AD与圆的切点为G,连接BG,通过解直角三角形求得圆的半径,然后根据扇形的面积公式求得三个扇形的面积,进而就可求得阴影的面积.
解答 解:设AD与圆的切点为G,连接BG,
∴BG⊥AD,
∵∠A=60°,BG⊥AD,
∴∠ABG=30°,
在直角△ABG中,BG=$\frac{\sqrt{3}}{2}$AB=$\frac{\sqrt{3}}{2}$×2=$\sqrt{3}$,AG=1,
∴圆B的半径为$\sqrt{3}$,
∴S△ABG=$\frac{1}{2}$×1×$\sqrt{3}$=$\frac{\sqrt{3}}{2}$
在菱形ABCD中,∠A=60°,则∠ABC=120°,
∴∠EBF=120°,
∴S阴影=2(S△ABG-S扇形)+S扇形FBE=2($\frac{\sqrt{3}}{2}$-$\frac{30π×3}{360}$)+$\frac{120×π×(\sqrt{3})^{2}}{360}$=$\sqrt{3}$+$\frac{π}{2}$.
故选A.
点评 此题主要考查了菱形的性质以及切线的性质以及扇形面积等知识,正确利用菱形的性质和切线的性质求出圆的半径是解题关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{7}$ | B. | $\sqrt{7}-1$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 4$\sqrt{3}$ | B. | 6$\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 8 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com