分析 (1)根据判别式的意义得到△=4(m+1)2-4(m2-1)=8m+4≥0,然后解不等式即可;
(2)根据根与系数的关系得到x1+x2=-2(m+1),x1x2=m2-1,再利用完全平方公式变形(x1-x2)2=16-x1x2得到(x1+x2)2-3x1x2=16,则4(m+1)2-3(m2-1)=16,解方程得m1=-9,m2=1,然后利用m的值值范围确定满足条件的m的值.
解答 解:(1)根据题意得△=4(m+1)2-4(m2-1)=8m+4≥0,
解得m≥-$\frac{1}{2}$;
(2)根据题意得x1+x2=-2(m+1),x1x2=m2-1,
∵(x1-x2)2=16-x1x2,
∴(x1+x2)2-4x1x2=16-x1x2,即(x1+x2)2-3x1x2=16,
∴4(m+1)2-3(m2-1)=16,
整理得m2+8m-9=0,解得m1=-9,m2=1,
而m≥-$\frac{1}{2}$;
∴m的值为1.
点评 本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了根与系数的关系.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2,2 | B. | -3,2 | C. | 2,3 | D. | 3,2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com