精英家教网 > 初中数学 > 题目详情
已知函数y1=-
1
3
x2和反比例函数y2的图象有一个交点是A(
a
,-1).
(1)求函数y2的解析式;
(2)在同一直角坐标系中,画出函数y1和y2的图象草图;
(3)借助图象回答:当自变量x在什么范围内取值时,对于x的同一个值,都有y1<y2
分析:(1)利用A点在二次函数的图象上,进而利用待定系数法求反比例函数解析式即可;
(2)根据二次函数的性质以及反比例函数的性质画出草图即可;
(3)利用函数图象以及交点坐标即可得出x的取值范围.
解答:解:(1)把点A(
a
,-1)代入y1=-
1
3
x2

得-1=-
1
3
a,
∴a=3.
设y2=
k
x
,把点A(
3
,-1)代入,
得  k=-
3

∴y2=-
3
x


(2)画图;   
                              

(3)由图象知:当x<0,或x>
3
时,y1<y2
点评:此题主要考查了待定系数法求反比例函数解析式以及二次函数的性质和比较函数的大小关系,利用数形结合得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知函数y1=x,y2=x2+bx+c,α,β为方程y1-y2=0的两个根,点M(t,T)在函数y2的图象上.
(Ⅰ)若α=
1
3
,β=
1
2
,求函数y2的解析式;
(Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为
1
123
时,求t的值;
(Ⅲ)若0<α<β<1,当0<t<1时,试确定T,α,β三者之间的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知函数y=y1+y2,其中 y1与x成正比例,y2与x+2成反比例,且当x=1时,y=
13
; 当x=3时,y=5.
(1)求y关于x的解析式.(2)求当 x=5时,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,已知两点坐标P1(x1,y1)P2(x2,y2)我们就可以使用两点间距离公式P1P2=
(x1-x2)2+(y1-y 2)2
来求出点P1与点P2间的距离.如:已知P1(-1,2),P2(0,3),则P1P2=
(-1-0)2+(2-3)2
=
2

通过阅读材以上材料,请回答下列问题:
(1)已知点P1坐标为(-1,3),点P2坐标为(2,1)
①求P1P2=
13
13

②若点Q在x轴上,则△QP1P2的周长最小值为
6+
13
6+
13

(2)如图,在平面直角坐标系中,四边形OABC为长方形,点A、B的坐标分别为
(4,0)(4,3),动点M、N分别从点O,点B同时出发,以每秒1个单位的速度运动,其中M点沿OA向终点A运动,N点沿BC向终点C运动,过点N作NF⊥BC交AC于F,交AO于G,连结MF.
当两点运动了t秒时:
①直接写出直线AC的解析式:
y=-
3
4
x+3
y=-
3
4
x+3

②F点的坐标为(
4-t
4-t
3
4
t
3
4
t
);(用含t的代数式表示)
③记△MFA的面积为S,求S与t的函数关系式;(0<t<4);
④当点N运动到终点C点时,在y轴上是否存在点E,使△EAN为等腰三角形?若存在,请直接写出点E的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

已知函数y=y1+y2,设y1与x成正比例,y2与x成反比例,且当x=3时,y=8;当x=6时,y=13,求自变量为x的函数y的解析式。

查看答案和解析>>

科目:初中数学 来源:2013年天津市中考数学试卷 (解析版) 题型:解答题

已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:
(Ⅰ)求y1与x之间的函数关系式;
(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).
(1)求y2与x之间的函数关系式;
(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.
x-13
y1=ax2+bx+c

查看答案和解析>>

同步练习册答案