精英家教网 > 初中数学 > 题目详情
精英家教网如图,在梯形ABCD中,AD∥BC,AB=DC,∠ABC=80°,E是腰CD上一点,连接BE、AC、AE,若∠ACB=60°,∠EBC=50°,求∠EAC的度数.
分析:连接BD交AC于F,连EF.可证△BCF,△ADF均为正三角形.可证CB=CE.E、F、B在以C为圆心,CE为半径的圆上,从而可证∠EFD=∠EDF=40°,因为EF=ED,于是易证△ADE≌△AFE,所以∠CAE=∠DAE=
1
2
∠DAC=30°.
解答:精英家教网解:连接BD交AC于F,连EF.
∵在梯形ABCD中,AD∥BC,AB=DC,
∴AC=BD,∠DCB=∠ABC=80°,
∵∠ACB=60°,
∴△BCF,△ADF均为正三角形,∠ACD=∠DCB-∠ACB=80°-60°=20°,
∵∠BEC=180°-∠CBE-∠DCB=180°-50°-80°=50°=∠CBE,
∴CB=CE=CF,
∴E、F、B在以C为圆心,CE为半径的圆上,
在⊙C上任取点M,
∵∠DCB=80°,
∴∠M=
1
2
∠BCD=40°
∴∠DFE=∠M=40°(圆内接四边形的任何一个外角都等于它的内对角),
∵∠CDB=180°-∠DBC-∠DCB=180°-60°-80°=40°,
∴∠EFD=∠EDF=40°,
∴EF=ED,
∵AD=AF,
∴△ADE≌△AFE(SSS),
∴∠CAE=∠DAE=
1
2
∠DAC=30°.
点评:此题考查等腰梯形的有关性质、等边三角形的判定、三角形内角和定理、全等三角形的判定,甚至还有圆的有关性质,难度较大,作辅助线是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案