精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系内,半径为t的⊙D与x轴交于点A(1,0)、B(5,0),点D在第一象限,点C的坐标为(0,-2),过B点作BE⊥CD于点E.
(1)当t为何值时,⊙D与y轴相切?并求出圆心D的坐标;
(2)直接写出,当t为何值时,⊙D与y轴相交、相离;
(3)直线CE与x轴交于点F,当△OCF与△BEF全等时,求点F的坐标.
(1)∵⊙D与x轴交于点A(1,0)、B(5,0),
∴D的横坐标为3,
∴当t=3时,⊙D与y轴相切,
过点D作DH⊥AB于点H,连接DA,
∴BH=
1
2
AB=2,
∴DH=
9-4
=
5

∴D(3,
5
);

(2)t>3时,⊙D与y轴相交;
当t=2时,点D是AB的中点,在x轴上,不在第一象限;
所以2<t<3时,⊙D与y轴相离;

(3)由题意可知当△OCF与△BEF全等时,FB=FC,
设点F的坐标为(x,0),即OF=x,FB=OB-OF=5-x,
又OC=2,在直角三角形FOC中,
根据勾股定理得:FC=
x2+22

则有5-x=
x2+22
,解得:x=2.1,
∴F(2.1,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,B为线段AD上一点,△ABC和△BDE都是等边三角形,连接CE并延长交AD的延长线于点F,△ABC的外接圆⊙O交CF于点M.
(1)求证:BE是⊙O的切线;
(2)求证:AC2=CM•CF;
(3)若CM=
2
7
7
,MF=
12
7
7
,求BD;
(4)若过点D作DGBE交EF于点G,过G作GHDE交DF于点H,则易知△DGH是等边三角形.设等边△ABC、△BDE、△DGH的面积分别为S1、S2、S3,试探究S1、S2、S3之间的等量关系,请直接写出其结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足是D.
求证:AC平分∠DAB.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直角坐标系中直线AB交x轴,y轴于点A(4,0)与B(0,-3),现有一半径为1的动圆的圆心位于原点处,以每秒1个单位的速度向右作平移运动,则经过______秒后动圆与直线AB相切.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图已知△ABC的一边BC与以AC为直径的⊙O相切于点C,若BC=4,AB=5,则sinB=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.
(1)求证:①点F是BD中点;②CG是⊙O的切线;
(2)若FB=FE=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是某种圆形装置的示意图,圆形装置中,⊙O的直径AB=5,AB的不同侧有定点C和动点P,tan∠CAB=
4
3
.其运动过程是:点P在弧AB上滑动,过点C作CP的垂线,与PB的延长线交于点Q.
(1)当PC=______时,CQ与⊙O相切;此时CQ=______.
(2)当点P运动到与点C关于AB对称时,求CQ的长;
(3)当点P运动到弧AB的中点时,求CQ的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

⊙O的圆心到直线l的距离为3cm,⊙O的半径为1cm,将直线l向垂直于l的方向平移,使l与⊙O相切,则平移的距离是(  )
A.1cmB.2cmC.4cmD.2cm或4cm

查看答案和解析>>

同步练习册答案