A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由抛物线开口方向得a<0,由抛物线对称轴在y轴的右侧得b>0,由抛物线与y轴的交点在x轴下方得c<0,则-bc>0,然后根据一次函数图象与系数的关系判断直线y=ax-bc经过的象限即可.
解答 解:∵抛物线开口向下,
∴a<0,
∵抛物线对称轴在y轴的右侧,
∴b>0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴-bc>0,
∴直线y=ax-bc经过第一、二、四象限,不经过第三象限.
故选C.
点评 本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了一次函数图象与系数的关系.
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{5}{12}$ | B. | $\frac{5}{13}$ | C. | $\frac{10}{13}$ | D. | $\frac{12}{13}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
x | … | -2 | -1 | 0 | 1 | … |
y | … | 0 | 4 | 6 | 6 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5ab-3ab=2 | B. | (1+$\sqrt{2}$)(1-$\sqrt{2}$)=1 | C. | -(-a)4÷a2=a2 | D. | (xy)-2=$\frac{1}{{x}^{2}{y}^{2}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com