分析 首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造边角关系,进而可求出答案.
解答 解:设AH=x米,
在RT△EHG中,∵∠EGH=45°,
∴GH=EH=AE+AH=x+12,
∵GF=CD=288米,
∴HF=GH+GF=x+12+288=x+300,
在Rt△AHF中,∵∠AFH=30°,
∴AH=HF•tan∠AFH,即x=(x+300)•$\frac{\sqrt{3}}{3}$,
解得x=150($\sqrt{3}$+1).
∴AB=AH+BH≈409.8+1.5≈411(米)
答:凤凰山与中心广场的相对高度AB大约是411米.
点评 此题主要考查了解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
个数分组 | 28≤x<36 | 36≤x<44 | 44≤x<52 | 52≤x<60 | 60≤x<68 |
频数 | 2 | 5 | 7 | 4 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com