精英家教网 > 初中数学 > 题目详情
(1)已知a、b、c是△ABC的三边,且满足a2+b2+c2-6a-8b-10c+50=0,请你根据此条件判断这个三角形的形状,并说明理由.
(2)在△ABC中,三条边的长分别为a、b、c,且a=x2-1,b=x2+1,c=2x(x>1,且x为整数),请你判断这个三角形的形状,并说明理由.
分析:(1)先将已知等式利用配方法变形得到(a-5)2+(b-12)2+(c-13)2=0,再利用非负数的性质,分别求出a、b、c的值,然后利用勾股定理的逆定理得出△ABC是直角三角形;
(2)先分别计算a2+c2与b2,发现a2+c2=b2,再根据勾股定理的逆定理得出△ABC是直角三角形.
解答:解:(1)△ABC是直角三角形,理由如下:
∵a2+b2+c2-6a-8b-10c+50=0,
∴a2-6a+9+b2-8b+16+c2-10c+25=0,
即(a-3)2+(b-4)2+(c-5)2=0,
∴a=3,b=4,c=5,
∵32+42=52,即a2+b2=c2
∴△ABC是直角三角形;

(2)△ABC是直角三角形,理由如下:
∵a=x2-1,b=x2+1,c=2x,
∴a2+c2=(x2-1)2+(2x)2=x4-2x2+1+4x2=x4+2x2+1,
b2=(x2+1)2=x4+2x2+1,
∴a2+c2=b2
∴△ABC为直角三角形.
点评:本题考查了配方法的应用、勾股定理的逆定理、非负数的性质,解题的关键是将已知等式利用配方法变形,利用非负数的性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图为某班35名学生在某次社会实践活动中拣废弃的矿泉水瓶情况条形统计图,图中上面部分数据破损导致数据不完全.已知此次活动中学生拣到矿泉水瓶个数中位数是5个,则根据统计图,下列选项中的(  )数值无法确定.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知c<0,0<|a|<|b|<|c|,
b2c
a
=-
b
a
ac
,则a、b、c由小到大的顺序排列
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知矩形ABCD,OA与x轴正半轴夹角为60°,点A的横坐标为2,点C的横坐标为-
3
2
,则点B的坐标为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程组
x+y=2
y+z=3
z+x=7
,则x+y+z等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知实数a、b(a≠b)分别满足a2+2a=2,b2+2b=2.求
1
a
+
1
b
的值.

查看答案和解析>>

同步练习册答案