精英家教网 > 初中数学 > 题目详情

已知:如图,平行四边形ABCD中,E、F分别是边AB、CD的中点.

(1)求证:四边形EBFD是平行四边形;

(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.

 

【答案】

(1)根据平行四边形的性质可得AB=CD,AB∥CD,再由E、F分别是边AB、CD的中点可证得BE=CF,从而可以证得结论;(2)8

【解析】

试题分析:(1)根据平行四边形的性质可得AB=CD,AB∥CD,再由E、F分别是边AB、CD的中点可证得BE=CF,从而可以证得结论;

(2)由AD=AE,∠A=60°可证得△ADE是等边三角形,即得DE=AD=2,再由(1)知四边形EBFD是平行四边形,根据平行四边形的性质即可求得结果.

(1)在平行四边形ABCD中,AB=CD,AB∥CD.

∵E、F是AB、CD中点,

∴BE=AB,DF=CD.

∴BE=CF.

∵EB∥DF,

∴四边形EBFD是平行四边形;

(2)∵AD=AE,∠A=60°,

∴△ADE是等边三角形.

∴DE=AD=2,

又∵BE=AE=2,        

由(1)知四边形EBFD是平行四边形,

∴四边形EBFD的周长=2(BE+DE)=8.

考点:平行四边形的判定和性质

点评:平行四边形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中数学 来源:2010-2011学年江苏省江阴市夏港中学九年级第二学期期中考试数学卷 题型:解答题

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东省九年级上学期阶段检测数学卷(解析版) 题型:解答题

已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

【解析】要证△ADF≌△CBE,因为AE=CF,则两边同时加上EF,得到AF=CE,又因为ABCD是平行四边形,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等,由全等可得到∠DFA=∠BEC,所以得到DF∥EB

 

查看答案和解析>>

科目:初中数学 来源:2011届江苏省江阴市九年级第二学期期中考试数学卷 题型:解答题

(本题满分6分)已知:如图,E、F是平行四边行ABCD的对角线AC上的两点,AE=CF。

求证:(1)△ADF≌△CBE;(2)EB∥DF。

 

查看答案和解析>>

同步练习册答案