精英家教网 > 初中数学 > 题目详情

【题目】如图,BD=CDABD=ACD=90°,点EF分别在ABAC上,若ED平分∠BEF

1)求证:FD平分∠EFC

2)若EF=4AF=6AE=5,求BECF的和的长.

【答案】1)证明见解析;(24

【解析】试题分析:(1)过DDMEF已知ED平分∠BEF根据角平分线的性质定理可得BD=DM又因BD=CD可得DC=DM根据角平分线的判定定理即可得FD平分∠EFC;(2因为ED平分∠BEF即可得∠BDE=MDE利用SAS即可判定△BDE≌△MDE根据全等三角形的性质即可得EB=EM同理即可证得CF=MF根据EF=BE+CF即可求得EF的长

试题解析:

证明:(1)过DDMEF

ED平分∠BEF

BD=DM

BD=CD

DC=DM

FD平分∠EFC

2ED平分∠BEF

∴∠BDE=MDE

BDEMDE中,

∴△BDE≌△MDESAS),

EB=EM

同理CF=MF

EF=BE+CF=4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】7张如图1所示的长为a,宽为b(a>b)的小长方形纸片按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,求ab满足的条件.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为(
A.5πcm2
B.10πcm2
C.15πcm2
D.20πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3 ,4 ,5 的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.
实践操作 如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.

(1)请在图2中证明四边形AEFD是正方形.
(2)请在图4中判断NF与ND′的数量关系,并加以证明;
(3)请在图4中证明△AEN(3,4,5)型三角形;
(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水果市场将120吨水果运往各地商家,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

车型

汽车运载量(吨/辆)

5

8

10

汽车运费(元/辆)

400

500

600

(1)若全部水果都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?

(2)为了节约运费,市场可以调用甲、乙、丙三种车型参与运送(每种车型至少1辆),已知它们的总辆数为16辆,你能通过列方程组的方法分别求出几种车型的辆数吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按不喜欢一般不比较喜欢非常喜欢四个等级对该手机进行评价,图和图是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:

本次调查的人数为多少人?A等级的人数是多少?请在图中补全条形统计图.

中,a等于多少?D等级所占的圆心角为多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则cos∠AEF的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是(
A.
B.
C.
D.π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合题。
(1)计算:(3﹣π)0 +|3﹣ |+(tan30°)1
(2)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算. 比如:2⊕5=2×(2﹣5)+1
=2×(﹣3)+1
=﹣6+1
=﹣5
若3⊕x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.

查看答案和解析>>

同步练习册答案