精英家教网 > 初中数学 > 题目详情
22、已知:如图,矩形ABCD的对角线AC与BD相交于点O,点O关于直线AD的对称点是E,连接AE、DE.
(1)试判断四边形AODE的形状,不必说明理由;
(2)请你连接EB、EC,并证明EB=EC.
分析:(1)利用对称的性质,又因为四边形ABCD是矩形,两个结论联合起来,可知四边形AODE是菱形,(2)先证出∠EAB=∠EDC,再证明△EAB≌△EDC,从而得出EB=EC.
解答:解:(1)∵点O和点E关于直线AD对称,
∴AOD≌△AED;
∴OA=OE  OD=DE;
∵有矩形ABCD,
∴OA=OD;
∴OA=OD=DE=EA;
∴四边形AODE是菱形.

(2)∵四边形AODE是菱形,
∴AE=ED;
∴∠EAD=∠EDA;
∵四边形ABCD是矩形,
∴AB=CD,∠BAD=∠CDA=90°;
∴∠EAD+∠BAD=∠EDA+∠CDA;
∴∠EAB=∠EDC;
∴△EAB≌△EDC;
∴EB=EC.
点评:本题利用对称的性质(对称图形全等)和矩形的性质(矩形的对角线互相平分),以及全等三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,矩形ABCD中,E、F是AB上的两点,且AF=BE.求证:∠ADE=∠BCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知,如图,矩形ABCD中,E是CD的中点,连接BE并延长BE交AD的延长线于点F,连接AE.
(1)求证:AD=DF;
(2)若AD=3,AE⊥BE,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA精英家教网上,AH=2,连接CF.
(1)若DG=2,求证四边形EFGH为正方形;
(2)若DG=6,求△FCG的面积;
(3)当DG为何值时,△FCG的面积最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,矩形ABCD中,点E在边AB上,∠DEB的平分线EF交BC的延长线于点F,且AB=BF,连接DF.
(1)若tan∠FDC=
12
,AD=1,求DF的长;
(2)求证:DE=BE+CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2002•西藏)已知:如图,矩形ABCD中,E、F是AB边上两点,且AF=BE,连结DE、CF得到梯形EFCD.
求证:梯形EFCD是等腰梯形.

查看答案和解析>>

同步练习册答案