【题目】某果品超市销售进价为40元/箱的苹果,市场调查发现,若以每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱,设每箱苹果的销售价为x(元)(x>50)时,平均每天的销售利润为w(元).
(1)求w与x之间的函数关系式;
(2)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润为多少元?
(3)临近春节,为稳定市场,物价部门规定每箱苹果售价不得高于58元,求此时平均每天获得的最大利润是多少元?
【答案】(1)w与x之间的函数关系式为w=;
(2)每箱苹果的销售价为60元时,可以获得最大利润,最大利润是1200元;
(3)当x=58时,w有最大值,w最大=1188,此时平均每天获得的最大利润是1188元.
【解析】
(1)依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式为y=903(x50),然后根据销售利润=销售量×(售价进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式即可;
(2)根据题意求出自变量的取值范围,然后求出(1)中二次函数的最值即可;
(3)根据题意求出x的取值范围,再利用二次函数的性质求解可得.
解:(1)由题意得:y=903(x50),
∴w===,
即w与x之间的函数关系式为w=;
(2)∵,且,
∴,
∵二次函数w=的顶点坐标是(60,1200),
∴当x=60 时,w有最大值,w最大=1200,
答:每箱苹果的销售价为60元时,可以获得最大利润,最大利润是1200元;
(3)∵,且≤58,
∴≤58,
∵二次函数w=中,,开口向下,对称轴是直线,
∴当时,w的值随x值的增大而增大,
∴当x=58时,w有最大值,w最大=1188,
答:此时平均每天获得的最大利润是1188元.
科目:初中数学 来源: 题型:
【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).
(1)小红摸出标有数3的小球的概率是多少?.
(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.
(3)求点P(x,y)在函数y=﹣x+5图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线
对称轴为______,顶点坐标为______;
在坐标系中利用五点法画出此抛物线.
x | ______ | ______ | ______ | ______ | ______ | ||
y | ______ | ______ | ______ | ______ | ______ |
若抛物线与x轴交点为A、B,点在抛物线上,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若正比例函数y=kx(k≠0)的图象经过点P(2,3),则该函数的图象经过的点是( )
A.(3,2)B.(1,6)C.(2,3)D.(1,6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,且BD=CE,AD与BE相交于点F.
(1)求证:△ABD≌△BCE
(2)求证:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF = EG,则CD的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,BE=FC,CF=2FD,AE、BF交于点G,连接AF,给出下列结论:①AE⊥BF; ②AE=BF; ③BG=GE; ④S四边形CEGF=S△ABG,其中正确的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】以坐标原点为圆心,1为半径的圆分别交x,y轴的正半轴于点A,B.
(1)如图一,动点P从点A处出发,沿x轴向右匀速运动,与此同时,动点Q从点B处出发,沿圆周按顺时针方向匀速运动.若点Q的运动速度比点P的运动速度慢,经过1秒后点P运动到点(2,0),此时PQ恰好是⊙O的切线,连接OQ.求∠QOP的大小;
(2)若点Q按照(1)中的方向和速度继续运动,点P停留在点(2,0)处不动,求点Q再经过5秒后直线PQ被⊙O截得的弦长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com