精英家教网 > 初中数学 > 题目详情
关于二次函数y=2x2+3,下列说法中正确的是                ( )
A.它的开口方向是向下B.当x<-1时,y随x的增大而减小
C.它的顶点坐标是(2,3)D.当x=0时,y有最大值是3
B

试题分析:从该二次函数y=2x2+3可以看出,>0,图像的开口向上,有最小值,即顶点,对称轴是y轴,顶点是(0,3),当x<0时,y随着x的增大而减小,当x>0时,y随着x的增多大而增大。由此只有B是正确的。
点评:该题较为简单,是常考题,主要考查学生对二次函数解析式系数与图像之间关系的掌握。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知关于的一元二次函数)的图象与轴相交于两点(点在点的左侧),与轴交于点,且,顶点为

(1)求出一元二次函数的关系式;
(2)点为线段上的一个动点,过点轴的垂线,垂足为.若的面积为,求关于的函数关系式,并写出的取值范围;
(3)在(2)的条件下,当点坐标是           时,为直角三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线过点
(1)求抛物线的解析式;
(2)将抛物线在直线下方的部分沿直线翻折,图象其余的部分保持不变,得到的新函数图象记为.点在图象上,且
①求的取值范围;
②若点也在图象上,且满足恒成立,则的取值范围为      

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,二次函数的图象与轴交于B、C两点(点B在点C的左侧),一次函数的图象经过点B和二次函数图象上另一点A. 点A的坐标(4 ,3),.

(1)求二次函数和一次函数解析式;
(2)若点P在第四象限内,求面积S的最大值并求出此时点P的坐标;
(3)若点M在直线AB上,且与点A的距离是到轴距离的倍,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某企业为手机产业基地提供手机配件,受人民币走高的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
月份x
1
2
3
4
5
6
7
8
9
价格y1(元/件)
56
58
60
62
64
66
68
70
72
随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:

(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
(2)若去年该配件每件的售价为100元,生产每件配件的人力成本为5元,其它成本3元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式(1≤x≤9,且x取整数),10至12月的销售量p2(万件)与月份x满足函数关系式(10≤x≤12,且x取整数)。求去年哪个月销售该配件的利润最大,并求出这个最大利润;
(3)今年1月,每件配件的原材料价格比去年12月上涨6元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时1月份销售量在去年12月的基础上减少8a%,这样,在保证1月份上万件配件销量的前提下,完成了利润17万元的任务,请你计算出a的值。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种商品的进价为每件50元,售价为每件60元.为了促销,决定凡是购买10件以上的,每多买一件,售价就降低0.10元(例如,某人买20件,于是每件降价0.10×(20-10)=1元,就可以按59元/件的价格购买),但是最低价为55元/件.同时,商店在出售中,还需支出税收等其他杂费1.6元/件.
(1)求顾客一次至少买多少件,才能以最低价购买?
(2)写出当出售x件时(x>10),利润y(元)与出售量x(件)之间的函数关系式;
(3)有一天,一位顾客买了47件,另一位顾客买了60件,结果发现卖了60件反而比卖了47件赚的钱少.为了使每次卖的越多赚的钱也越多,在其他促销条件不变的情况下,最低价55元/件至少要提高到多少?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元。为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。求:
(1)若商场平均每天要盈利1200元,且让顾客感到实惠,每件衬衫应降价多少元?
(2)要使商场平均每天盈利最多,请你帮助设计降价方案。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列各图中有可能是函数,图象的是

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,已知抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB =" 2OA" = 4.

(1)求该抛物线的函数表达式;
(2)设P是(1)中抛物线上的一个动点,以P为圆心,R为半径作⊙P,求当⊙P与抛物线的对称轴lx轴均相切时点P的坐标.
(3)动点E从点A出发,以每秒1个单位长度的速度向终点B运动,动点F从点B出发,以每秒个单位长度的速度向终点C运动,过点E作EG//y轴,交AC于点G(如图2).若E、F两点同时出发,运动时间为t.则当t为何值时,△EFG的面积是△ABC的面积的

查看答案和解析>>

同步练习册答案