精英家教网 > 初中数学 > 题目详情

如图,在以O为圆心的两个圆中,大圆的半径为5,小圆的半径为3, 则与小圆相切的大圆的弦长为(   )       

A.4                B.6                C.8                D.10

 

【答案】

C

【解析】

试题分析:利用小圆半径,大圆半径和弦的一半构造直角三角形,利用勾股定理可求算出弦的一半的长,再求弦长.

如图:

∵AB是小圆的切线,

∴OC⊥AB,

∴AB=2AC,

在直角△AOC中,根据勾股定理可得

∴AB=2AC=8

故选C.

考点:垂径定理,勾股定理

点评:辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,已知AB=8,大圆半径为5,则小圆半径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2006•静安区二模)如图,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于B,大圆的弦BC⊥AB,过点C作大圆的切线交AB的延长线于D,OC交小圆于E
(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长y,yx之间的函数解析式,并写出定义域.
(3)△BCE能否成为等腰三角形?如果可能,求出大圆半径;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在以O为圆心的两个同心圆中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP=1,MA=AB=BC,则△MBQ的面积为
3
15
8
3
15
8

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆的半径为5cm,小圆的半径为3cm,则弦AB的长为(  )

查看答案和解析>>

同步练习册答案