17£®ÒÑÖª£ºµã»ðÆ÷AÊÇÖ±Ïßy=kxÉÏÒ»µã£¬µãPÊÇÏ߶ÎOAÉϵÄÒ»¸ö¶¯µã£¨P²»ÓëO£¬AÖغϣ©£¬¹ýµãP×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪµãB£¬ÒÔPBΪ±ß³¤ÔÚPBµÄÓÒ²à×öÕý·½ÐÎPBCD£¬ÔòµãCÂäÔÚxÖáÉÏ£¬×÷ÉäÏßAD½»xÖáÓÚµãE£¬Èçͼ£¬ÈôOA=10£¬cos¡ÏAOE=$\frac{3}{5}$£¬ÉèOP=m£®
£¨1£©ÇóµãAµÄ×ø±ê£»
£¨2£©ÇëÓú¬mµÄ´úÊýʽ±íʾ¡÷APDµÄÃæ»ýΪS£¬²¢Çóµ±mΪºÎֵʱ£¬SÓÐ×î´ó£¨»ò×îС£©Öµ£¬×î´ó£¨»ò×îС£©ÖµÊǶàÉÙ£¿
£¨3£©¢ÙÇëÓú¬mµÄ´úÊýʽ±íʾÏ߶ÎOEµÄ³¤£»
¢Úµ±mΪºÎֵʱ£¬ÒÔµãO£¬D£¬CΪ¶¥µãµÄÖ±½ÇÈý½ÇÐÎÓëRt¡÷CDEÏàËÆ£¿

·ÖÎö £¨1£©ÉèA£¨a£¬b£©£¬¸ù¾Ý¸ù¾ÝÈý½Çº¯ÊýµÄ¶¨Ò壬ÒÔ¼°OAµÄ³¤Áгö·½³Ì£¬¼´¿ÉÇó³öaÓëbµÄÖµ£¬¼´¿ÉÈ·¶¨³öAµÄ×ø±ê£»
£¨2£©¸ù¾ÝS¡÷APD=$\frac{1}{2}$•AP•PDsin¡ÏAPD¹¹½¨¶þ´Îº¯Êý£¬¼´¿ÉÀûÓöþ´Îº¯ÊýµÄÐÔÖʽâ¾öÎÊÌ⣮
£¨3£©¢ÙÓÉ¡÷APD¡×¡÷AOE£¬ÍƳö $\frac{PD}{OE}$=$\frac{AP}{AO}$£¬Áгö·½³Ì¼´¿É½â¾öÎÊÌ⣮
¢ÚÓÉDCÓëOCµÄ±Èֵȷ¶¨£¬ÈôÈý½ÇÐÎOCDÓëÈý½ÇÐÎDCEÏàËÆ£¬µÃ±ÈÀýÇó³ömµÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©ÉèA£¨a£¬b£©£¬×÷AF¡ÍOEÓÚF£®
cos¡ÏAOF=$\frac{a}{OA}$=$\frac{3}{5}$£¬¼´a=$\frac{3}{5}$¡Á10=6£¬sin¡ÏAOF=$\frac{b}{OA}$=$\frac{4}{5}$£¬¼´b=$\frac{4}{5}$¡Á10=8£¬
ÔòA£¨6£¬8£©£»

£¨2£©¡ßsin¡ÏAOB=$\frac{4}{5}$£¬sin¡ÏAPD=sin¡ÏAOB=$\frac{4}{5}$£¬
¡ßAP=OA-OP=10-m£¬$\frac{4}{5}$=$\frac{PB}{OP}$=$\frac{PB}{m}$£¬¼´PB=PD=$\frac{4}{5}$m£¬
¡àS¡÷APD=$\frac{1}{2}$AP•PDsin¡ÏAPD=$\frac{1}{2}$¡Á$\frac{4}{5}$¡Á£¨10-m£©¡Á$\frac{4}{5}$m¨T-$\frac{8}{25}$m2+$\frac{80}{25}$m£¬
ÔòS¡÷APDÓÐ×î´óÖµ£¬µ±m=5ʱ£¬Smax=8£»

£¨3£©¢Ù¡ß¡÷APD¡×¡÷AOE£¬
¡à$\frac{PD}{OE}$=$\frac{AP}{AO}$£¬¼´ $\frac{\frac{4}{5}m}{OE}$=$\frac{10-m}{10}$£¬
ÕûÀíµÃ£ºOE=$\frac{8m}{10-m}$£¬
¢Ú¡ßDCÓëOC³É¹Ì¶¨±ÈÀý $\frac{4}{7}$£¬
Èô¡÷OCD¡×¡÷DCE£¬ÔòÓÐ $\frac{CE}{DC}$=$\frac{DC}{OC}$=$\frac{4}{7}$£¬¼´ $\frac{\frac{8m}{10-m}-\frac{7}{5}m}{\frac{4}{5}m}$=$\frac{4}{7}$£¬
½âµÃ£ºm=$\frac{74}{13}$£®
Èô¡÷OCD¡×¡÷ECD£¬ÔòÓÐ$\frac{CD}{EC}$=$\frac{DC}{OC}$=$\frac{4}{7}$£¬
¡à$\frac{\frac{4}{5}m}{\frac{8m}{10-m}-\frac{7}{5}m}$=$\frac{4}{7}$£¬
½âµÃm=$\frac{50}{7}$£¬
×ÛÉÏËùÊö£¬mµÄֵΪ$\frac{74}{13}$»ò$\frac{50}{7}$£®

µãÆÀ ±¾Ì⿼²éÏàËÆÈý½ÇÐÎ×ÛºÏÌâ¡¢Èñ½ÇÈý½Çº¯Êý¶¨Òå¡¢Èý½ÇÐÎÃæ»ý¹«Ê½£¬×ø±êÓëͼÐÎÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇÁé»îÔËÓÃËùѧ֪ʶ½â¾öÎÊÌ⣬ѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÈçͼËùʾ£¬Ö±Ïßy1=x+nÓëyÖá½»Óڵ㣨0£¬1£©£¬Ö±Ïßy2=-x+mÓëxÖá½»Óڵ㣨3£¬0£©£¬Á½Ö±Ïß½»ÓÚµãA£®²»µÈʽx+n¡Ý-x+mµÄ½â¼¯Îªx¡Ý1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®¼ÆËã
£¨1£©$\sqrt{8}$¡Á$\sqrt{2}$-3
£¨2£©£¨$\sqrt{7}$+$\sqrt{3}$£©£¨$\sqrt{3}$-$\sqrt{7}$£©-$\sqrt{16}$
£¨3£©$\sqrt{50}$+$\sqrt{\frac{1}{2}}$-$\sqrt{72}$
£¨4£©£¨3$\sqrt{12}$-2$\sqrt{\frac{1}{3}}$+$\sqrt{48}$£©¡Â2$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÓôúÊýʽ±íʾ£º¡°xµÄ5±¶ÓëyµÄºÍµÄÒ»°ë¡±$\frac{1}{2}£¨5x+y£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®½üËÆÊý3.14Ëù±íʾµÄ¾«È·¶ÈNµÄ·¶Î§ÊÇ3.135¡ÜN£¼3.145£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªµÈ±ß¡÷ABCÖУ¬µãD£¬E·Ö±ðÔÚ±ßAB£¬BCÉÏ£¬°Ñ¡÷BDEÑØÖ±ÏßDE·­ÕÛ£¬Ê¹µãBÂäÔÚµãB¡ä´¦£¬DB¡ä£¬EB¡ä·Ö±ð½»±ßACÓÚµãF£¬G£¬Èô¡ÏADF=60¡ã£¬Ôò¡ÏEGCµÄ¶ÈÊýΪ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èô7+$\sqrt{14}$µÄСÊý²¿·ÖΪa£¬7-$\sqrt{14}$µÄСÊý²¿·ÖΪb£¬Ôò£¨a+b£©2014=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®$\sqrt{64}$Ïà·´ÊýµÄÁ¢·½¸ùÊÇ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬AB=AD£¬¡ÏBAD=¡ÏC=60¡ã£¬µãEΪËıßÐÎABCDÄÚ²¿Ò»µã£¬Á¬½ÓAE¡¢BE£¬¡ÏAEB=¡ÏCBE=90¡ã£¬BC=3£¬ÔòÏ߶ÎBEµÄ³¤Îª$\frac{3\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸