精英家教网 > 初中数学 > 题目详情

直线数学公式交x轴于A,交y轴于B,将这条直线绕某点顺时针旋转90°且M、N分别为A、B的对应点(M、N在第一象限),直线MN交y轴于C,且S△BCM=S△BMN,双曲线数学公式过M、N两点,则k=________.

2
分析:过M、N点分别作x轴、y轴的垂线垂足分别为E、H、F、Q,ME与NQ交与T点,两垂线的交点为P,直线AB绕某点顺时针旋转90°交x轴于K点,先求出A(-1,0),B(0,),利用勾股定理得到AB=2,则∠OAB=60°,∠OBA=30°,而∠KPA=90°,可得到∠MNT=30°,再利用旋转的性质得到MN=AB=2,则MT=1,NT=,设M点坐标为(a,b),则N点坐标为(a+,b-1),根据反比例函数图象上点的坐标特点得到k=ab=(a+)(b-1),即a-b+=0①,又S△BCM=S△BMN,则CM=MN,
得到MH为△CQN的中位线,所以MH=NQ,即a=(a+),解得a=,易求得b=2,于是k=ab=2
解答:过M、N点分别作x轴、y轴的垂线,垂足分别为E、H、F、Q,ME与NQ交与T点,两垂线的交点为P,直线AB绕某点顺时针旋转90°交x轴于K点,如图所示
对于y=x+,令x=0,则y=;令y=0,则x+=0,解得x=1,即A(-1,0),B(0,),AB==2,
则∠OAB=60°,∠OBA=30°,
∵∠KPA=90°,
∴∠PKA=30°,
∴∠MNT=30°,
∵直线AB绕某点顺时针旋转90°且M、N分别为A、B的对应点,
∴MN=AB=2,
∴MT=OA=1,NT=OB=
设M点坐标为(a,b),则N点坐标为(a+,b-1),
∵双曲线过M、N两点,
∴k=ab=(a+)(b-1),即a-b+=0①,
∵S△BCM=S△BMN
∴CM=MN,
∴MH=NQ,即a=(a+),解得a=
把a=代入①得-b+=0,
∴b=2,
∴k=ab=2
故答案为2
点评:本题考查了反比例函数的综合题:反比例函数图象上点的横纵坐标的积为定值;旋转的性质要熟练运用;勾股定理和含30°的直角三角形三边的关系在几何计算中常用到.
练习册系列答案
相关习题

科目:初中数学 来源:第3章《圆》中考题集(38):3.5 直线和圆的位置关系(解析版) 题型:解答题

已知:如图,直线交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.

查看答案和解析>>

科目:初中数学 来源:2012年浙江省湖州市中考数学一模试卷(解析版) 题型:解答题

已知:如图,直线交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《图形的相似》(04)(解析版) 题型:解答题

(2005•武汉)已知:如图,直线交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《三角形》(08)(解析版) 题型:解答题

(2005•武汉)已知:如图,直线交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.

查看答案和解析>>

科目:初中数学 来源:2005年湖北省武汉市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•武汉)已知:如图,直线交x轴于O1,交y轴于O2,⊙O2与x轴相切于O点,交直线O1O2于P点,以O1为圆心,O1P为半径的圆交x轴于A、B两点,PB交⊙O2于点F,⊙O1的弦BE=BO,EF的延长线交AB于D,连接PA、PO.
(1)求证:∠APO=∠BPO;
(2)求证:EF是⊙O2的切线;
(3)EO1的延长线交⊙O1于C点,若G为BC上一动点,以O1G为直径作⊙O3交O1C于点M,交O1B于N.下列结论:①O1M•O1N为定值;②线段MN的长度不变.只有一个是正确的,请你判断出正确的结论,并证明正确的结论,以及求出它的值.

查看答案和解析>>

同步练习册答案