精英家教网 > 初中数学 > 题目详情

【题目】Rt△ABC中,∠C=90°,点D,E分别是边AC,BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点P在线段AB上,如图①,且∠α=50°,则∠1+∠2=
(2)若点P在斜边AB上运动,如图②,则∠α、∠1、∠2之间的关系为
(3)如图③,若点P在斜边BA的延长线上运动(CE<CD),请直接写出∠α、∠1、∠2之间的关系:
(4)若点P运动到△ABC形外(只需研究图④情形),则∠α、∠1、∠2之间有何关系?并说明理由.

【答案】
(1)140°
(2)解:∠1+∠2=90°+∠α
(3)解:∠2﹣∠1=90°+∠α;∠2=∠1+90°;∠1﹣∠2=∠α﹣90°
(4)解:

∵∠PFD=∠EFC,

∴180°﹣∠PFD=180°﹣∠EFC,

∴∠α+180°﹣∠1=∠C+180°﹣∠2,

∴∠2=90°+∠1﹣α.

故答案为:∠2=90°+∠1﹣α


【解析】解:(1)如图,连接PC, ∵∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,
∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,
∵∠DPE=∠α=50°,∠C=90°,
∴∠1+∠2=50°+90°=140°,
所以答案是:140°;

·(2)连接PC,
∵∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,
∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,
∵∠C=90°,∠DPE=∠α,
∴∠1+∠2=90°+∠α;
所以答案是:∠1+∠2=90°+∠α;

·(3)如图1,
∵∠2=∠C+∠1+∠α,
∴∠2﹣∠1=90°+∠α;
如图2,∠α=0°,∠2=∠1+90°;
如图3,∵∠2=∠1﹣∠α+∠C,
∴∠1﹣∠2=∠α﹣90°.

所以答案是;∠2﹣∠1=90°+∠α;∠2=∠1+90°;∠1﹣∠2=∠α﹣90°.
【考点精析】解答此题的关键在于理解三角形的内角和外角的相关知识,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角,以及对三角形的外角的理解,了解三角形一边与另一边的延长线组成的角,叫三角形的外角;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】菱形ABCD绕点O沿逆时针方向旋转到四边形ABCD′,则四边形ABCD__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.

(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD的外侧,作等边△ADE,则∠EBD=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用电脑,在同一页面对某图形进行复制,得到一组图案,这一组图案可以看作一个基本图形通过( )得到的

A. 旋转 B. 平移和旋转

C. 平移 D. 拉伸

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若A是五次多项式,B是三次多项式,则A+B一定是(
A.五次多项式
B.八次多项式
C.三次多项式
D.次数不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线轴交于点A40),与轴交于点B,在x轴上有一动点Em0)(0m4),过点E轴的垂线交直线AB于点N,交抛物线于点P,过点PPMAB于点M

1)求的值和直线AB的函数表达式;

2)在P点运动的过程中,请用含m的代数式表示线段PN

3)设PMN的周长为AEN的周长为,若,求m的值;

4)如图2,在(3)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为αα90°),连接,求的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是(
A.①②
B.②③
C.①③
D.②④

查看答案和解析>>

同步练习册答案