精英家教网 > 初中数学 > 题目详情
(2013•重庆)一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=
k
x
(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(-2,0),则下列结论中,正确的是(  )
分析:根据函数图象知,由一次函数图象所在的象限可以确定a、b的符号,且直线与抛物线均经过点A,所以把点A的坐标代入一次函数或二次函数可以求得b=2a,k的符号可以根据双曲线所在的象限进行判定.
解答:解:∵根据图示知,一次函数与二次函数的交点A的坐标为(-2,0),
∴-2a+b=0,
∴b=2a.
∵由图示知,抛物线开口向上,则a>0,
∴b>0.
∵反比例函数图象经过第一、三象限,
∴k>0.
A、由图示知,双曲线位于第一、三象限,则k>0
∴2a+k>2a,即b<2a+k.
故本选项错误;
B、∵b=2a,
∴a=-k,则k<-k.
∴k<0.
这与k>0相矛盾,
∴a=b+k不成立.
故本选项错误;
C、∵a>0,b=2a,
∴b>a>0.
故本选项错误;
D、观察二次函数y=ax2+bx和反比例函数y=
k
x
(k≠0)图象知,当x=-
b
2a
=-
2a
2a
=-1时,y=-k>-
b2
4a
=-
4a2
4a
=-a,即k<a,
∵a>0,k>0,
∴a>k>0.
故本选项正确;
故选D.
点评:本题综合考查了一次函数、二次函数以及反比例函数的图象.解题的关键是会读图,从图中提取有用的信息.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•重庆模拟)2012年4月5日下午,重庆一中初2013级“智力快车”比赛的决赛在渝北校区正式进行.“智力快车”活动是我校综合实践课程的传统版块,已有多年历史,比赛试题的内容涉及到文史艺哲科技等多个方面.随着时代的变化,其活动项目也在不断更新.今年的比赛除了继承传统的“快速判断”、“猜猜看”、“英语平台”、“风险提速”四个环节外,特新增了“动手动脑”一项.比赛结束后,一综合实践小组成员就新增环节的满意程度,对现场的观众进行了抽样调查,给予评分,其中:非常满意--5分,满意--4分,一般--3分,有待改进--2分,并将调查结果制作成了如图的两幅不完整的统计图:

(1)本次共调查了
20
20
名同学,本次调查同学评分的平均得分为
3.9
3.9
分;
(2)将条形统计图补充完整;
(3)如果评价为“一般”的只有一名是男生,评价为“有待改进”的只有一名是女生,针对“动手动脑”环节的情况,综合实践小组的成员分别从评价为“一般”和评价为“有待改进”的两组中,分别随机选出一名同学谈谈意见和建议,请你用列表或画树状图的方法求出所选两名同学刚好都是女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为
2
5
2
5

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2013•重庆)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制了如图所示的统计图,由图中所给出的信息解答下列问题:
(1)求出x的值,并将不完整的条形统计图补充完整;
(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)为了贯彻落实国家关于增强青少年体质的计划,重庆市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商似提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了了解对学生奶口味的喜好情况,某初级中学九年级(1)班张老师对全班同学进行了调查统计,制成了如下两幅不完整的统计图:

(1)该班五种口味的学生奶喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整;
(2)在进行调查统计的第二天,张老师为班上每位同学发放一盒学生奶,喜好B味的小明和喜好C味的小刚等四位同学最后领取,剩余的学生奶放在同一纸箱里,分别有B味2盒,C味和D味各1盒,张老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小明和小刚喜好的学生奶的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•重庆)已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图1,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图2,△GMN从图1的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:

(1)在整个运动过程中,当点G在线段AE上时,求t的值;
(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形?若存在,求出t的值;若不存在,说明理由;
(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S.请直接写出S与t之间的函数关系式以及自变量t的取值范围.

查看答案和解析>>

同步练习册答案