精英家教网 > 初中数学 > 题目详情
探究与应用:在学习几何时,我们可以通过分离和构造基本图形,将几何“模块”化.例如在相似三角形中,K字形是非常重要的基本图形,可以建立如下的“模块”(如图①):
(1)请就图①证明上述“模块”的合理性.已知:∠A=∠D=∠BCE=90°,求证:△ABC△DCE;
(2)请直接利用上述“模块”的结论解决下面两个问题:
①如图②,已知点A(-2,1),点B在直线y=-2x+3上运动,若∠AOB=90°,求此时点B的坐标;
②如图③,过点A(-2,1)作x轴与y轴的平行线,交直线y=-2x+3于点C、D,求点A关于直线CD的对称点E的坐标.
(1)证明:∵∠BCE=90°,
∴∠ACB+∠DCE=90°.
∵∠A=90°,
∴∠ACB+∠B=90°,
∴∠DCE=∠B.
∵∠A=∠D,
∴△ABC△DCE;

(2)①作AG⊥x轴于点G,BH⊥x轴于点H
∴△AGO△OHB,
AG
OH
=
GO
BH

∵A(-2,1),
∴AG=1,GO=2.
∵点B在直线y=-2x+3上,
∴设点B的坐标为(x,-2x+3),
∴OH=x,BH=-2x+3,
1
x
=
2
-2x+3

∴x=
3
4

∴-2x+3=
3
2

∴B(
3
4
3
2
);
②过点E作EN⊥AC的延长线于点N,过点D作DM⊥NE的延长线于点M,
∵A(-2,1),
∴C点的纵坐标为1,D点的横坐标为-2,
∴1=-2x+3,y=-2×(-2)+3,
∴x=1,y=7,
∴C(1,1),D(-2,7).
设E(x,y),
∴DM=x+2,ME=7-y,CN=x-1,EN=y-1,
由对称可知:DE=AD=6,CE=AC=3
∵∠M=∠N=∠DEC=90°,
∴△DME△ENC,
DM
EN
=
ME
CN
=
DE
CE

x+2
y-1
=2
7-y
x-1
=2

∴解得:
x=
14
5
y=
17
5

∴E(
14
5
17
5
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

“5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象.
(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);
(2)写出客车和出租车行驶的速度分别是多少;
(3)试求出出租车出发后多长时间赶上客车.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角梯形OABC中,ABOC,过点O、点B的直线解析式为y=
4
3
x,OA、AB是方程x2-14x+48=0的两个根,OB=BC,D、E分别是线段OC、OB上的动点(点D与点O、点C不重合),且∠BDE=∠ABO,设CD=x,BE=y.
(1)求BC和OC的长;
(2)求y与x的函数关系式;
(3)是否存在x的值,使以点B、点D、点E为顶点的三角形为等腰三角形?若存在,请直接写出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知点A(-6,1),B(-1,5),在x轴上有点C(m,0),在y轴上有点D(0,n),使AB+BD+CD+CA最短.求
m
n
的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

弹簧的长度y(cm)与所挂物体的质量x(kg)关系如右图所示,刚弹簧不挂重物时的长度是(  )
A.9cmB.10cmC.10.5cmD.11cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小明同学受《乌鸦喝水》故事的启发,利用量筒和完全相同的若干个小球进行了如下操作(量筒是圆柱体,高为49cm,桶内水高30cm(如图1)):

若将三个小球放入量筒中,水高如图2所示,则放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数表达式为______(不要求写出自变量的取值范围);要使量筒有水溢出(如图3),则至少要放入的小球个数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线y=kx+b过点A(-1,5)且平行于直线y=-x.
(1)求这条直线的解析式;
(2)若点B(m,-5)在这条直线上,O为坐标原点,求m的值;
(3)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线y=kx+4与x轴、y轴分别交于点C、D,点C的坐标为(-8,0),点A的坐标为(-6,0).
(1)求k的值和该直线的函数解析式;
(2)若点P(x,y)是第二象限内的直线上的一个动点,当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:
(1)甲、乙两人的速度各是多少?
(2)求出甲距A地的路程s与行驶时间t之间的函数关系式.
(3)在什么时间段内乙比甲离A地更近?

查看答案和解析>>

同步练习册答案