【题目】如图,AB∥CD,CE平分∠ACD交AB于E点.
(1)求证:△ACE是等腰三角形;
(2)若AC=13cm,CE=24cm,求△ACE的面积.
科目:初中数学 来源: 题型:
【题目】已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.
(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的有()
(1) 钝角的补角一定是锐角
(2) 过己知直线外一点作这条直线的垂线有且只有一条
(3) —个角的两个邻补角是对顶角
(4) 等角的补角相等
(5) 直线外一点A与直线上各点连接而成的所有线段中,最短线段的长是3cm,则
点A到直线的距离是3cm .
A. 2个 B. 3个 C. 4 个 D. 5 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, OAB与ODC是位似图形 。
试问:(1)AB与CD平行吗?请说明理由 。
(2)如果OB=3,OC=4,OD=3.5.试求OAB与ODC的相似比及OA的长 。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,CE,BE的交点为E,现作如下操作:
第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,
第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,
第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3……
第n次操作,分别作∠ABEn-1和∠DCEn-1的平分线,交点为En.
(1)如图①,求证:∠E=∠B+∠C;
(2)如图②,求证:∠E1=∠E;
(3)猜想:若∠En=b°,求∠BEC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据 ≈1.41, ≈1.73供选用,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于实数、我们定义一种新运算(其中、均为非零常数).等式右边是通常的四则运算.由这种运算得到的数我们称之为线性数,记为,其中、叫做线性数的一个数对.若实数、都取正整数,我们称这样的线性数为正格线性数,这时的、叫做正格线性数的正格数对.
(1)若,则 .
(2)已知,若正格线性数,求满足不等式组的所有的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3.
(1)观察每次变换前后的三角形的变化规律,若将△OA3B3变换成△OA4B4,则A4的坐标是__,B4的坐标是__;
(2)若按第(1)题找到的规律将△OAB进行n次变换,得到△OAnBn,比较每次变换中三角形顶点坐标有何变化,找出规律,推测An的坐标是__,Bn的坐标是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也逐步增大.某商场从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7 500元购进A型空气净化器和用6 000元购进B型空气净化器的台数相同.
(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?
(2)经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商场销售B型空气净化器的利润为3200元,请问该商场应将B型空气净化器的售价定为多少元?
(3)已知A型空气净化器净化能力为340m3/h,B型空气净化器净化能力为240m3/h.某公司室内办公场地总面积为600m2 , 室内墙高3.5m.受二胎政策影响,近期孕妇数量激增,为保证胎儿健康成长,该公司计划购买15台空气净化器净化空气,每天花费30分钟将室内空气净化一新,若不考虑空气对流等因素,该公司至少要购买A型空气净化器多少台?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com