精英家教网 > 初中数学 > 题目详情

如图扇形OAB,∠AOB=90°,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,若⊙P的半径为1,则扇形OAB的半径长为________.

+1
分析:连接PF、PE、OC,根据相切两圆的性质得出OC过P,根据切线的性质和正方形的判定推出四边形PFOE是正方形,推出PF=PE=OF=OE=1,由勾股定理求出OP,即可求出OC.
解答:
连接PF、PE、OC,
根据相切两圆的性质得出OC过P,
则OC=OA=OB,
∵⊙P切OA于F,切OB于E,
∴∠PEO=∠PFO=90°=∠AOB,
∴四边形PFOE是矩形,
∵PF=PE,
∴矩形PFOE是正方形,
∴PF=PE=OF=OE=1,
由勾股定理得:OP==
∴OA=OC=OP+PC=+1,
故答案为:+1.
点评:本题考查了正方形的性质和判定,相切两圆的性质,勾股定理等知识点,关键是得出四边形PFOE是正方形,题目比较典型,是一道比较好的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图扇形OAB,∠AOB=90°,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,若⊙P的半径为1,则扇形OAB的半径长为
2
+1
2
+1

查看答案和解析>>

科目:初中数学 来源:2012-2013学年广西河池市南丹中学九年级(上)期中数学试卷(解析版) 题型:解答题

如图扇形OAB的圆心角为120°,半径为6cm.
(1)请用尺规作出扇形的对称轴(不写做法,保留作图痕迹).
(2)若将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的底面积.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年湖北省黄冈市团风县淋山河高中九年级(上)第二次月考数学试卷(解析版) 题型:填空题

如图扇形OAB,∠AOB=90°,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,若⊙P的半径为1,则扇形OAB的半径长为   

查看答案和解析>>

科目:初中数学 来源:2011-2012学年四川省宜宾市宜宾县柳嘉镇九年级(上)月考数学试卷(解析版) 题型:解答题

如图扇形OAB的圆心角为120°,半径为6cm.
(1)请用尺规作出扇形的对称轴(不写做法,保留作图痕迹).
(2)若将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的底面积.

查看答案和解析>>

科目:初中数学 来源:2010-2011学年浙江省杭州市十三中九年级(上)期末复习数学试卷(解析版) 题型:解答题

如图扇形OAB的圆心角为120°,半径为6cm.
(1)请用尺规作出扇形的对称轴(不写做法,保留作图痕迹).
(2)若将此扇形围成一个圆锥的侧面(不计接缝),求圆锥的底面积.

查看答案和解析>>

同步练习册答案