精英家教网 > 初中数学 > 题目详情
5.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1+S2=7.

分析 根据等底等高的三角形的面积相等,求出△AEC的面积,再根据等高的三角形的面积的比等于底边的比,求出△ACD的面积,然后根据计算S1+S2即可得解.

解答 解:∵BE=CE,
∴S△ACE=$\frac{1}{2}$S△ABC=$\frac{1}{2}$×6=3,
∵AD=2BD,
∴S△ACD=$\frac{2}{3}$S△ABC=$\frac{2}{3}$×6=4,
∴S1+S2=S△ACD+S△ACE=4+3=7.
故答案为:7.

点评 本题主要考查了三角形的面积,解题时注意:等底等高的三角形的面积相等,等高的三角形的面积的比等于底边的比.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.方程(3x-1)(2x+4)=1化成一般形式后,一次项系数与常数项的和为5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在△ABC中,D、E分别是边BC、AB上的点,BE=AE,BD=2CD,△AEC的面积为S1,△ADC的面积为S2,若△ABC的面积为8,则S1-S2=$\frac{4}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)数学课上老师提出如下问题:
如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.
①填空:∠OBC+∠ODC=180°;
②若DE平分∠ODC,BF平分∠CBM(如图1),试说明DE⊥BF.
请你完成上述问题.
(2)课后小佳和小芳对问题进行了进一步研究,若把DE平分∠ODC改为DG分别平分∠ODC的外角,其他条件不变(如图2),小佳和小芳发现BF与DG的位置关系发生了变化,请你判断BF与DG的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.(n+1)个全等的等腰三角形按如图所示排列,其底边在同一条直线上,连接AB2交B1C1于点D1,连接AB3交B2C2于点D2,连接AB4交B3C3于点D3,….设S${\;}_{△{B}_{2}{D}_{1}{C}_{1}}$为S1,S${\;}_{△{B}_{3}{D}_{2}{C}_{2}}$为S2…,S${\;}_{△{B}_{n+1}{D}_{n}{C}_{n}}$为Sn,若S${\;}_{△A{B}_{1}{C}_{1}}$=2,则Sn=$\frac{2n}{n+1}$(用含n的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,AB是半圆的直径,点O为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O于D,连接BE.设∠BEC=α,求sinα的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某种商品进价为200元,标价300元出售,商场规定可以打折销售,但其利润不能少于5%.请你帮助售货员计算一下,此种商品可以按几折销售?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,四边形ABCD中,对角线AC、BD相交于点O,O为AC、BD的中点,AB=10,AC=16,BD=12.
(1)四边形ABCD是什么特殊的四边形?请证明;
(2)点P在AO上,点Q在DO上,且AP=2OQ.若PQ=BQ,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:△ABC的两边AB,AC的长是方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC=5;求:
①求k的取值范围;
②k为何值时,△ABC是以BC为斜边的直角三角形.

查看答案和解析>>

同步练习册答案