精英家教网 > 初中数学 > 题目详情

【题目】如图,直线l1y1=x+my轴交于点A06),直线l2y=kx+1分别与x轴交于点B20),与y轴交于点C,两条直线交点记为D

1m=   k=   

2)求两直线交点D的坐标;

3)根据图象直接写出y1y2时自变量x的取值范围.

【答案】16 ;(2D点坐标为(43);(3y1y2时,x4

【解析】整体分析:

1A06)代入y1=x+mm的值,把B20)代入y=kx+1k值;2解由这两个直线方程组成的方程组;3y1y2即是直线y1在直线y2的下方时x的范围.

解:(1)把A06),代入y1=x+m,得到m=6

B20)代入y=kx+1,得到k=

故答案为6

2)联立l1l2解析式,即,解得:

D点坐标为(43);

3)观察图象可知:y1y2时,x4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中, ①AE和BF的位置关系为
②线段MN的最小值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察图,回答下列问题:

(1)甲、乙两图分别能折成什么几何体?简述它们的特征;

(2)设几何体的面数为F,顶点数为V棱数为E,请计算(1)中两个几何体的FVE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次构造勾股数的探究性学习中,老师给出了下表:

其中为正整数,且

)观察表格,当 时,此时对应的的值能否为直角三角形三边的长?说明你的理由.

)探究 之间的关系并用含的代数式表示: __________ __________ __________

)以 为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.

(1)求证:△ABC≌△AED;
(2)当∠B=140°时,求∠BAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图A在数轴上所对应的数为﹣2

1)点B在点A右边距A4个单位长度,求点B所对应的数;

2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点 B 以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求AB两点间距离.

3)在2)的条件下,现A点静止不动,B点再以每秒2个单位长度沿数轴向左运动时,经过多长时间AB两点相距4个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.

(1)若区域Ⅰ的三种瓷砖均价为300元/m2 , 面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2 , 且两区域的瓷砖总价为不超过12000元,求S的最大值;
(2)若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等
①求AB,BC的长;
②若甲、丙两瓷砖单价之和为300元/m2 , 乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:(﹣2)3+( 2 sin45°
(2)分解因式:(y+2x)2﹣(x+2y)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,甲、乙两船同时由港口A出发开往海岛B,甲船沿东北方向向海岛B航行,其速度为15海里/小时;乙船速度为20海里/小时,先沿正东方向航行1小时后,到达C港口接旅客,停留半小时后再转向北偏东30°方向开往B岛,其速度仍为20海里/小时.

(1)求港口A到海岛B的距离;

(2)B岛建有一座灯塔,在灯塔方圆5海里内都可以看见灯塔,问甲、乙两船哪一艘先看到灯塔?

查看答案和解析>>

同步练习册答案