分析 根据正方形的边的性质和直角可通过SAS判定△BCG≌△DCE,从而利用全等的性质得到∠BHD=90°即BH⊥DE;
解答 证明:(1)在正方形ABCD中,∠BCG=90°,BC=CD
在正方形GCEF中,∠DCE=90°,CG=CE
在△BCG和△DCE中,$\left\{\begin{array}{l}{BC=DC\\;}\\{∠BCG=∠DCE}\\{CG=CE}\end{array}\right.$
∴△BCG≌△DCE(SAS)
(2)∵△BCG≌△DCE,
∴∠1=∠2∵∠2+∠DEC=90°
∴∠1+∠DEC=90°
∴∠BHD=90°
∴BH⊥DE;
点评 此题主要考查正方形的性质,全等三角形的判定等几何知识.关键是根据正方形的边的性质和直角可通过SAS判定△BCG≌△DCE.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 5-6箱 | B. | 6-7箱 | C. | 7-8箱 | D. | 8-9箱 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1<y2 | B. | y1≤y2 | C. | y1>y2 | D. | 无法确定 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com