【题目】如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为.双曲线的图象经过BC的中点D,且与AB交于点E,连接DE.
(1)求k的值及点E的坐标;
(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.
【答案】(1)k=3,点E的坐标为;(2)
【解析】
(1)首先根据点B的坐标和点D为BC的中点表示出点D的坐标,代入反比例函数的解析式求得k值,然后将点E的横坐标代入求得E点的纵坐标即可;
(2)根据△FBC∽△DEB,利用相似三角形对应边的比相等确定点F的坐标后即可求得直线FB的解析式.
解:(1)∵BC∥x轴,点B的坐标为(2,3),
∴BC=2,
∵点D为BC的中点,
∴CD=1,
∴点D的坐标为(1,3),
代入双曲线y=(x>0)得;
∵BA∥y轴,
∴点E的横坐标与点B的横坐标相等,为2,
∵点E在双曲线上,
∴y=
∴点E的坐标为(2,);
(2)∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),
∴BD=1,BE=,BC=2,
∵△FBC∽△DEB,
∴,
即:,
∴FC=,
∴点F的坐标为(0,),
设直线FB的解析式y=kx+b(k≠0),
则,
解得:k=,b=,
∴直线FB的解析式.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2 +bx+ 4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,2)为线段BC的中点,BC的垂直平分线与x轴、y轴分别交于F、G.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)在直线EF上求一点H,使△CDH的周长最小,并求出最小周长;
(3)若点K在x轴上方的抛物线上运动,当K运动到什么位置时,
△EFK的面积最大?并求出最大面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道,如图1,AB是⊙O的弦,点F是的中点,过点F作EF⊥AB于点E,易得点E是AB的中点,即AE=EB.⊙O上一点C(AC>BC),则折线ACB称为⊙O的一条“折弦”.
(1)当点C在弦AB的上方时(如图2),过点F作EF⊥AC于点E,求证:点E是“折弦ACB”的中点,即AE=EC+CB.
(2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE、EC、CB满足怎样的数量关系?直接写出,不必证明.
(3)如图4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圆⊙O的半径为2,过⊙O上一点P作PH⊥AC于点H,交AB于点M,当∠PAB=45°时,求AH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知抛物线y=x2+bx+c经过点A(-2,0),B(0,-4)与x轴交于另一点C,连接BC.
(1)求抛物线的解析式;
(2)如图,P是第一象限内抛物线上一点,BP交x轴于点E,且S△PBO=S△PBC,求证:E是OC的中点;
(3)在(2)的条件下求点P的坐标.
(4)在(2)的条件下拋物线上是否存在点D,使△ACD的面积与△ABP的面积相等?若存在,请求出点D的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)(2017·黄冈)已知:如图,一次函数y=-2x+1与反比例函数y=的图象有两个交点A(-1,m)和B,过点A作AE⊥x轴,垂足为E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,-2),连结DE.
(1)求k的值;
(2)求四边形AEDB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发以2cm/s的速度沿B→A→C运动到点C停止.若△BPQ的面积为y运动时间为x(s),则下列图象中能大致反映y与x之间关系的是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C(0,3),且OB=OC=3AO.直线y=x+1与抛物线交于A、D两点,与y轴交于点E,点Q是抛物线的顶点,设直线AD上方的抛物线上的动点P的横坐标为m.
(1)求该抛物线的解析式及顶点Q的坐标;
(2)连结CQ,判断线段CQ与线段AE的数量关系和位置关系,并说明理由.
(3)连结PA、PD,当m为何值时,S△PAD=S△DAB;
(4)在直线AD上是否存在一点H使△PQH为等腰直角三角形,若存在请求出m的值,不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.
(1)饲养场的长为多少米(用含a的代数式表示).
(2)若饲养场的面积为288m2,求a的值.
(3)当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com