精英家教网 > 初中数学 > 题目详情

,0,等这些式子中,单项式的个数是

A.2个              B.3个              C.4个              D.5个

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,已知直线y=-
1
2
x与抛物线y=-
1
4
x2+6交于A,B两点.
(1)求A,B两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将△ABC放在平面直角坐标系中,使B、C在X轴正半轴上,若AB=AC.且A点坐精英家教网标为(3,2),B点坐标为(1,0).
(1)求边AC所在直线的解析式;
(2)若坐标平面内存在三角形与△ABC全等且有一条公共边,请写出这些三角形未知顶点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网【老题重现】
求证:等腰三角形底边上任意一点到两腰的距离和等于一腰上的高.
已知:△ABC中,AB=AC,点P是BC边上任意一点,PE⊥AB于E,PF⊥AC于F,CD是AB边上的高线.
求证:PE+PF=CD
证明:连接AP,
∵S△ABP+S△ACP=S△ABC
AB×PE
2
+
AC×PF
2
=
AB×CD
2

∵AB=AC
∴PE+PF=CD

【变式应用】
请利用“类比”和“化归”两种方法解答下面问题:
求证:等边三角形内上任意一点到三边的距离和等于一边上的高.
已知:点P是等边△ABC内任意一点,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,AH是BC边上的高线.精英家教网
求证:PD+PE+PF=AH
证明:
方法(一)类比:通过类比上题的思路和方法,模仿上题的“面积法”解决本题.
连接AP,BP,CP
方法(二)化归:如图,通过MN在等边△ABC中构造符合“老题”规律的等边△AMN,化“新题”为“老题”,直接利用“老题重现”的结论解决问题.
过点P作MN∥BC,交AB于M,交AC于N,交AH于G.

【提炼运用】
已知:点P是等边△ABC内任意一点,设到三边的距离分别为a、b、c,且使得以a、b、c为边能够构成三角形.
请在图中画出满足条件的点P一切可能的位置,并对这些位置加以说明.
精英家教网

查看答案和解析>>

科目:初中数学 来源:第6章《二次函数》中考题集(48):6.4 二次函数的应用(解析版) 题型:解答题

如图1,已知直线y=-x与抛物线y=-x2+6交于A,B两点.
(1)求A,B两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年北京市中考数学模拟试卷(解析版) 题型:解答题

(2006•长沙)如图1,已知直线y=-x与抛物线y=-x2+6交于A,B两点.
(1)求A,B两点的坐标;
(2)求线段AB的垂直平分线的解析式;
(3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在A,B两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与A,B构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

查看答案和解析>>

同步练习册答案