【题目】如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE·CA,分别延长AB,DC相交于点P,PB=BO,CD=2.则BO的长是_________.
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC,连结BD、CD,BD交直线AC于点E.
(1)当∠CAD=90°时,求线段AE的长.
(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,
①当∠CAD<120°时,设AE=x,y=(其中S△BCE表示△BCE的面积,S△AEF表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;
②当时,请直接写出线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1>y2,其中说法正确的序号是_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把方程(x- m)2+(y-n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,-2)、半径长为3的圆的标准方程是(x- 1)2+(y+2)2=9.在平面直角坐标系中,圆C与轴交于点A.B.且点B的坐标为(8.0),与y轴相切于点D(0, 4),过点A,B,D的抛物线的顶点为E.
(1)求圆C的标准方程;
(2)试判断直线AE与圆C的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+4经过A,C两点.
(1)求抛物线的表达式;
(2)在AC上方的抛物线上有一动点P.
①如图1,当点P运动到某位置时,以AP,AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P的坐标;
②如图2,过点O,P的直线y=kx交AC于点E,若PE∶OE=3∶8,求k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,AB=2,AC=3,D为BC的中点,动点E,F分别在AB,AC上,分别过点EG∥AD∥FH,交BC于点G、H,若EF∥BC,则EF+EG+FH的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD是⊙O的直径,CB是⊙O的弦,点A在CD的延长线上,过点C作CE⊥AB,交AB的延长线于点E,且CB平分∠ACE.
(1)求证:直线AB是⊙O的切线;
(2)若BE=3,CE=4,求⊙O的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com