【题目】如图,菱形OABC的一OA在x轴的正半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,则△COD的面积为_____.
【答案】20
【解析】
先证S菱形ABCO=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即可求得菱形的面积和结论.
解:作DF∥AO交OC于F,CE⊥AO于E,如图,
∵tan∠AOC=,
∴设CE=4x,OE=3x,
∴3x4x=24,x=±,
∴OE=3 ,CE=4 ,
由勾股定理得:OC=5,
∴S菱形OABC=OACE=5 ×4 =40,
∵四边形OABC为菱形,
∴AB∥CO,AO∥BC,
∵DF∥AO,
∴S△ADO=S△DFO,
同理S△BCD=S△CDF,
∵S菱形ABCO=S△ADO+S△DFO+S△BCD+S△CDF,
∴S菱形ABCO=2(S△DFO+S△CDF)=2S△CDO=40,
∴S△CDO=20;
故答案为:20.
科目:初中数学 来源: 题型:
【题目】如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、DA的中点,则下列说法正确的是( )
A.若四边形EFGH是平行四边形,则AC与BD相等
B.若四边形EFGH是正方形,则AC与BD互相垂直且相等
C.若AC=BD,则四边形EFGH是矩形
D.若AC⊥BD,则四边形EFGH是菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ABC=45°,BC=7cm,AB=cm。点P从点B出发沿BC方向向点C运动,当点P到点C时,停止运动
(1)如图2,过点P作PQ⊥BC,PQ交AB于点Q,以PQ为一边向右侧作矩形PQRS,若点R恰好在边AC上,且满足QR=2PQ.求BP得值.
(2)以点P为圆心,BP为半径作圆.
①如图3,当⊙P与边AC相切于点E时,求BP的值;
②随着BP的变化,⊙P与△ABC三边的公共点的个数也在变化,请直接写出公共点个数与对应的BP的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.
(1)试求抛物线的解析式;
(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;
(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.
(1)点的坐标是 ;
(2)若直线经过点,求直线的解析式;
(3)对于一次函数,当随的增大而减小时,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=﹣x+3与x轴交于A和B两点,(点A在点B的左侧),与y轴交于点C.
(1)求出直线BC的解析式.
(2)M为线段BC上方抛物线上一动点,过M作x轴的垂线交BC于H,过M作MQ⊥BC于Q,求出△MHQ周长最大值并求出此时M的坐标;当△MHQ的周长最大时在对称轴上找一点R,使|AR﹣MR|最大,求出此时R的坐标.
(3)T为线段BC上一动点,将△OCT沿边OT翻折得到△OC′T,是否存在点T使△OC′T与△OBC的重叠部分为直角三角形,若存在请求出BT的长,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=﹣x2+x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.
(1)求点A、B、C的坐标;
(2)求△ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com