精英家教网 > 初中数学 > 题目详情

【题目】关于x的方程 的解互为相反数,求 的值.

【答案】解:解方程x-2m=-3x+4,
得:4x=4+2m,即x=

解方程2-m=x,得x=2-m;
∵ 方程x-2m=-3x+4与2-m=x的解互为相反数,
所以 +2-m=0,
解得:m = 6 ,
故m的值为6


【解析】先分别解两个方程,用含m的式子分别表示出两方程的解,再根据两方程的解互为相反数,即两方程的解之和等于0,建立关于m的方程,求解即可。
【考点精析】掌握解一元一次方程的步骤和相反数是解答本题的根本,需要知道先去分母再括号,移项变号要记牢.同类各项去合并,系数化“1”还没好.求得未知须检验,回代值等才算了;只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;相反数的和为0;a+b=0 :a、b互为相反数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小红骑车从家出发,先向东骑行2km到达A村,继续向东骑行3km到达B村,然后向西骑行8km到达C村,最后回到家.
(1)以家为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示出A、B、C三个村庄的位置;
(2)C村离A村有多远?(直接写出答案)
(3)小红一共行了多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若点P(m,n)在第三象限,则点Q(mn,m+n)在第________象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直径坐标系中,抛物线与x轴交于点A(﹣3,0).B(1,0),与y轴交于点C

(1)直接写出抛物线的函数解析式;

(2)以OC为半径的O与y轴的正半轴交于点E,若弦CD过AB的中点M,试求出DC的长;

(3)将抛物线向上平移个单位长度(如图2)若动点P(x,y)在平移后的抛物线上,且点P在第三象限,请求出PDE的面积关于x的函数关系式,并写出PDE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图l所示,给定线段MN及其垂直平分线上一点P。若以点P为圆心,PM为半径的优弧(或半圆弧)MN上存在三个点可以作为一个等边三角形的顶点,则称点P为线段MN的“三足点”,特别的,若这样的等边三角形只存在一个,则称点P为线段MN的“强三足点”。

问题:如图2所示,平面直角坐标系xOy中,点A的坐标为(2,0),点B在射线y=x(x≥0)上。

(1)在点C(,0),D(,1),E(,-2)中,可以成为线段OA的“三足点”的是__________.

(2)若第一象限内存在一点Q既是线段OA的“三足点”,又是线段OB的“强三足点”,求点B的坐标。

(3)在(2)的条件下,以点A为圆心,AB为半径作圆,假设该圆与x轴交点中右侧一个为H,圆上一动点K从H出发,绕A顺时针旋转180°后停止,设点K出发后转过的角度为(0°< ≤180°),若线段OB与AK不存在公共“三足点”,请直接写出的取值范围是_______________。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是(
A.带①去
B.带②去
C.带③去
D.带①和②去

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若△ABC和△DEF的面积分别为S1、S2
(1)如图①,AC=DF,BC=DE,∠C=30°,∠D=150°,比较S1与S2的大小为
A.S1>S2
B.S1<S2
C.S1=S2
D.不能确定
(2)说明(1)的理由.
(3)如图②,在△ABC与△DEF中,AC=DF,BC=DE,∠C=30°,点E在以D为圆心,DE长为半径的半圆上运动,∠EDF的度数为α,比较S1与S2的大小(直接写出结果,不用说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】分解因式:x2﹣9=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.

(1)求反比例函数的表达式;

(2)根据图象直接写出当mx>时,x的取值范围;

(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案