精英家教网 > 初中数学 > 题目详情
16.如图1,C地位于A,B两地之间,甲步行直接从C地前往B地;乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的$\frac{5}{2}$倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.
(1)甲的速度为80m/min,乙的速度为200m/min;
(2)在图2中画出y2与x的函数图象;
(3)求甲乙两人相遇的时间;
(4)在上述过程中,甲乙两人相距的最远距离为960m.

分析 (1)根据函数图象中点(30,2400),利用“速度=路程÷时间”可算出甲的速度,再根据甲乙速度间的关系可得出乙的速度;
(2)根据乙的速度,以及A、C两地及B、C两地间的距离,利用“时间=路程÷速度”可找出函数图象经过点(0,0)、(3,600)、(6,0)、(18,2400),按照顺序连接两点即可得出结论;
(3)设甲乙两人相遇的时间为xmin,结合(2)y2与x的函数图象可知,乙相当于比甲晚出发6分钟,依照“路程=速度×时间”可列出关于x的一元一次方程,解方程即可得出结论;
(4)结合函数图象可知:最值只有可能出现在两种情况下,乙刚到A地时或乙到B地时,分别求出两种情形下两人间的距离,再作比较即可得出结论.

解答 解:(1)甲的速度为:2400÷30=80(m/min);
乙的速度为:80×2.5=200(m/min).
故答案为:80;200.

(2)∵600÷200=3(min),
600×2÷200=6(min).
2400÷200+6=18(min).
∴y2与x的函数图象过点(0,0)、(3,600)、(6,0)、(18,2400).
画出图形如图所示.


(3)设甲乙两人相遇的时间为xmin,
依题意得:80x=200(x-6),
解得:x=10.
答:甲乙两人相遇的时间为10min.

(4)∵乙的速度>甲的速度,
∴当x=3时,乙达到A地,此时甲乙两人间距可能最远,
3×(80+200)=840(m);
当x=18时,甲乙两人间距为:
2400-80×18=960(m).
∵960>840,
∴甲乙两人相距的最远距离为960m.
故答案为:960.

点评 本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系直接计算;(2)找出拐点坐标;(3)依照数量关系列出关于x的方程;(4)找出极值,再比较极值的大小,确定最值.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.(1)2$\sqrt{3}$-|$\sqrt{2}$-$\sqrt{3}$|;
(2)$\sqrt{\frac{16}{9}}$+$\root{3}{-8}$+$\sqrt{(-\frac{2}{3})^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线y=$\frac{{k}^{2}+1}{x}$上,则下列关系式正确的是(  )
A.y1>y2>y3B.y1>y3>y2C.y2>y3>y1D.y3>y1>y2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.小南骑自行车从A地向B地出发,1小时后小通步行从B地向A地出发.如图,两条线段l1、l2分别表示小南、小通离B地的距离y(单位:km)与所用时间x(单位:h)之间的函数图象,根据图中的信息,则小南、小通的速度分别是(  )
A.12 km/h,3 km/hB.15km/h,3km/hC.12 km/h,6 km/hD.15km/h,6km/h

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动.设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是(  )
A.AE=6cmB.sin∠EBC=0.8
C.当0<t≤10时,y=0.4t2D.当t=12s时,△PBQ是等腰三角形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)计算:2-1+($\frac{3}{2}$-$\sqrt{2}$)+$\sqrt{4}$+($\frac{1}{2}$)0
(2)解方程:x2-2x=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图所示,∠1=∠2,CF⊥AB,DE⊥AB,垂足分别为点F、E,求证:FG∥BC.
证明:∵CF⊥AB、DE⊥AB(已知)
∴∠BED=90°、∠BFC=90°
∴∠BED=∠BFC
∴(ED)∥(FC)
(同位角相等,两直线平行)
∴∠1=∠BCF(两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠2=∠BCF(等量代换)
∴FG∥BC(内错角相等,两直线平行)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:①画出平移后的△A′B′C′.②直接写出点A′、B′、C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.已知点(x1,y1)和(x2,y2)都在函数y=-2x+4的图象上.则下列结论正确的是(  )
A.若y1<y2,则x1<x2
B.若y1-y2=2,则x1-x2=-1
C.可由直线y=2x向上平移4个单位得到
D.与坐标系围成的三角形面积为8

查看答案和解析>>

同步练习册答案