精英家教网 > 初中数学 > 题目详情
18.如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.
(1)求证:△BFN∽△BCP;
(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);
②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.

分析 (1)根据折叠的性质可知,MN垂直平分线段BP,即∠BFN=90°,由矩形的性质可得出∠C=90°=∠BFN,结合公共角∠FBN=∠CBP,即可证出△BFN∽△BCP;
(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可;
②设⊙O与BC的交点为E,连接OB、OE,由△MDP为直角三角形,可得出AP为⊙O的直径,根据BM与⊙O相切,可得出MP⊥BM,进而可得出△BMP为等腰直角三角形,根据同角的余角相等可得出∠PMD=∠MBA,结合∠A=∠PMD=90°、BM=MP,即可证出△ABM≌△DMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度.

解答 (1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,
∴MN垂直平分线段BP,
∴∠BFN=90°.
∵四边形ABCD为矩形,
∴∠C=90°.
∵∠FBN=∠CBP,
∴△BFN∽△BCP.
(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.
②设⊙O与BC的交点为E,连接OB、OE,如图3所示.
∵△MDP为直角三角形,
∴AP为⊙O的直径,
∵BM与⊙O相切,
∴MP⊥BM.
∵MB=MP,
∴△BMP为等腰直角三角形.
∵∠AMB+∠PMD=180°-∠AMP=90°,∠MBA+∠AMB=90°,
∴∠PMD=∠MBA.
在△ABM和△DMP中,$\left\{\begin{array}{l}{∠MBA=∠PMD}\\{∠A=∠PMD=90°}\\{BM=MP}\end{array}\right.$,
∴△ABM≌△DMP(AAS),
∴DM=AB=4,DP=AM.
设DP=2a,则AM=2a,OE=4-a,
BM=$\sqrt{A{B}^{2}+A{M}^{2}}$=2$\sqrt{4+{a}^{2}}$.
∵BM=MP=2OE,
∴2$\sqrt{4+{a}^{2}}$=2×(4-a),
解得:a=$\frac{3}{2}$,
∴DP=2a=3.

点评 本题考查了相似三角形的判定、矩形的性质、角的计算、切线的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)根据矩形的性质结合翻折的性质,找出∠C=90°=∠BFN;(2)①利用尺规作图,画出⊙O;②根据全等三角形的判定定理AAS证出△ABM≌△DMP.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.实数a、b在数轴上对应点的位置如图所示,化简$\sqrt{(a-b)^{2}}$-|a+b+1|结果是(  )
A.-2b-1B.2b-1C.2a-1D.-2a-1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,Rt△AOB的直角边OA在x轴上,OA=2,AB=1,将Rt△AOB绕点O逆时针旋转90°得到Rt△COD,抛物线y=-$\frac{5}{6}$x2+bx+c经过B、D两点.
(1)求二次函数的解析式;
(2)连接BD,点P是抛物线上一点,直线OP把△BOD的周长分成相等的两部分,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.解下列方程组:
(1)$\left\{\begin{array}{l}{3x+2y=8}\\{x-2y=4}\end{array}\right.$
(2)$\left\{\begin{array}{l}{\frac{x}{2}-\frac{y+1}{3}=1}\\{3x+2y=4}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2-12x+32=0的两个根,且OA>OC.
(1)求线段OA,OC的长;
(2)求证:△ADE≌△COE,并求出线段OE的长;
(3)直接写出点D的坐标;
(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.计算$\frac{3x}{(x-1)^{2}}$-$\frac{3}{(x-1)^{2}}$的结果是(  )
A.$\frac{x}{(x-1)^{2}}$B.$\frac{1}{x-1}$C.$\frac{3}{x-1}$D.$\frac{3}{x+1}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:
(1)求该班的人数;
(2)请把折线统计图补充完整;
(3)求扇形统计图中,网络文明部分对应的圆心角的度数;
(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为(  )
A.65×102B.6.5×102C.6.5×103D.6.5×104

查看答案和解析>>

同步练习册答案