精英家教网 > 初中数学 > 题目详情

如图,设AB是已知线段,在AB上作正方形ABCD;取AD的中点E,连接EB;延长DA至F,使EF=EB;以线段AF为边作正方形AFGH.则点H是AB的黄金分割点.
为什么说上述的方法作出的点H是这条线段的黄金分割点,你能说出其中的道理吗?请试一试,说一说.

解:设正方形ABCD的边长为2,
在Rt△AEB中,依题意,得AE=1,AB=2,
由勾股定理知EB===
∴AH=AF=EF-AE=EB-AE=-1,
HB=AB-AH=3-
∴AH2=(2=6-2
AB•HB=2×(3-)=6-2
∴AH2=AB•HB,
所以点H是线段AB的黄金分割点.
分析:根据黄金分割点的定义,只需证明AH2=AB•HB即可.
点评:能够根据已知条件结合勾股定理求得线段的长,能够用黄金分割点的定义进行证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,点P是边长为4的正方形ABCD的边AD上一点并且不与点A、D重合,MN是线段BP的精英家教网垂直平分线,与AB、BP、CD分别交于点M、O、N,设AP=x.
(1)求BM(结果用含有x的代数式表示);
(2)请你判断四边形MNCB的面积是否有最小值?若有最小值,求出使其面积取得最小值时的x的值并求出面积的最小值;若没有最小值,说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知Rt△ABC中,∠A=30°,AC=6,边长为4的等边△DEF沿射线AC运动(A、D、E、C四点共线精英家教网),使边DF、EF与边AB分别相交于点M、N(M、N不与A、B重合).
(1)求证:△ADM是等腰三角形;
(2)设AD=x,△ABC与△DEF重叠部分的面积为y,求y关于x的函数解析式,并写出x的取值范围;
(3)是否存在一个以M为圆心,MN为半径的圆与边AC、EF同时相切?如果存在,请求出圆的半径;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.
(1)完成下面的证明:
∵MG平分∠BMN
已知
已知

∴∠GMN=
1
2
∠BMN
角平分线的定义
角平分线的定义

同理∠GNM=
1
2
∠DNM.
∵AB∥CD
已知
已知

∴∠BMN+∠DNM=
180°
180°

∴∠GMN+∠GNM=
90°
90°

∵∠GMN+∠GNM+∠G=
180°
180°

∴∠G=
90°
90°

∴MG与NG的位置关系是
MG⊥NG
MG⊥NG

(2)把上面的题设和结论,用文字语言概括为一个命题:
两平行直线被第三条直线所截,同旁内角的角平分线互相垂直
两平行直线被第三条直线所截,同旁内角的角平分线互相垂直

查看答案和解析>>

科目:初中数学 来源: 题型:044

如图所示①,已知AB是⊙O中一条固定的弦,点C是优弧的一个动点(点C不与A、B重合).

(1)设∠ACB的角平分线与劣弧交于点P,试猜想点P在上的位置是否会随点C的运动而变化?请说明理由.

(2)如图②,设AB=8,⊙O半径为5,在(1)的条件下,四边形ACBP的面积是否是定值?若是定值,求出这个定值;若不是定值,求出四边形ACBP面积的取值范围.

查看答案和解析>>

科目:初中数学 来源:2011年山东省济南市中考数学样卷(解析版) 题型:解答题

已知:如图,点P是边长为4的正方形ABCD的边AD上一点并且不与点A、D重合,MN是线段BP的垂直平分线,与AB、BP、CD分别交于点M、O、N,设AP=x.
(1)求BM(结果用含有x的代数式表示);
(2)请你判断四边形MNCB的面积是否有最小值?若有最小值,求出使其面积取得最小值时的x的值并求出面积的最小值;若没有最小值,说明你的理由.

查看答案和解析>>

同步练习册答案