精英家教网 > 初中数学 > 题目详情
数学家帕普斯借助函数给出一种“三等分锐角”的方法,步骤如下:
①将锐角∠AOB置于平面直角坐标系中,其中以点O为坐标原点,边OB在x轴上;
②边OA与函数y=
1
x
(x>0)
的图象交于点P,以P为圆心,2倍OP的长为半径作弧,在∠AOB内部交函数y=
1
x
(x>0)
的图象于点R;
③过点P作x轴的平行线,过点R作y轴的平行线,两直线相交于点M,连结OM.则∠MOB=
1
3
∠AOB.
请根据以上材料,完成下列问题:

(1)应用上述方法在图1中画出∠AOB的三等分线OM;
(2)设P(a,
1
a
),R(b,
1
b
)
,求直线OM对应的函数表达式(用含a,b的代数式表示);
(3)证明:∠MOB=
1
3
∠AOB;
(4)应用上述方法,请尝试将图2所示的钝角三等分.
(1)如图所示:


(2)由图1可得点M的坐标为(b,
1
a
),
故可得直线OM的表达式为:y=
1
ab
x.

(3)证明:过点P作y轴的平行线,过点R作x轴的平行线,两线相交于点Q,

则点Q的坐标为(a,
1
b
),
∴点Q在OM上,
∴四边形PQRM是矩形,
∴PN=
1
2
PR=OP,
∴MQ=PR,
∴PN=MN,
∴∠MOB=∠PMN=
1
2
∠PNO=
1
2
∠AOM,
∴∠MOB=
1
3
∠AOB.

(4)边OA与函数y=-
1
x
(x<0)的图象交于点P,以点P为圆心,2OP的长为半径作弧,
在第四象限交函数y=-
1
x
(x>0)的图象于点R,
过点P作x轴的平行线,过点R作y轴的平行线,两直线相交于点M,连接OM,则∠MOB=
1
3
∠AOB..
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知直线y=2x-1与双曲线y=
k
x
交于第一象限内一点A(m,1)
(1)直接写出该双曲线的函数表达式:______.
(2)根据图象直接写出解不等式2x-1>
1
x
(x>0)的解集:______.
(3)若点B(
a2+b2
2ab
,n)(a≠b)在双曲线y=
k
x
上,点P(x0,0)是x负半轴上一动点,分别过点A、B作x轴的垂线交于点E1和点E2,连接PA、PB.
①求证:n<1;
②当P点沿x轴向点E1运动的过程中,试探索△PAE1的面积与△PBE2面积的大小关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读材料:
若a,b都是非负实数,则a+b≥2
ab
.当且仅当a=b时,“=”成立.
证明:∵(
a
-
b
2≥0,∴a-2
ab
+b≥0.
∴a+b≥2
ab
.当且仅当a=b时,“=”成立.
举例应用:
已知x>0,求函数y=2x+
2
x
的最小值.
解:y=2x+
2
x
2
2x•
2
x
=4.当且仅当2x=
2
x
,即x=1时,“=”成立.
当x=1时,函数取得最小值,y最小=4.
问题解决:
汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(
1
18
+
450
x2
)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
(1)求y关于x的函数关系式(写出自变量x的取值范围);
(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

结合所给的阅读材料,求解问题.
材料:在直角坐标系中,如果有两点A(a,b),B(a,0),那么称点B是点A在x轴上的射影.
问题:如图,测得飞机的运动曲线是双曲线,飞机在点M的坐标为(-4500
3
,1125),炮弹在点O处沿α角向飞机射击,在点N处命中目标,此时点N在x轴上的射影坐标为(-2250
3
,0),已知α=30°,炮弹飞行速度为750米/秒.
问:炮弹从发射到击中目标用了多少时间?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的边AB在x轴的正半轴上,C(2,1),D(1,1).反比例函数y=
k
x
的图象与边BC交于点E,与边CD交于点F.已知BE:CE=3:1,则DF:FC等于(  )
A.4:1B.3:1C.2:1D.1:1

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图y=-6x+6与坐标轴交于A、B两点,△ABC为等腰直角三角形,双曲线y=
k
x
(x<0)
过C点,则k的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD(点A在第一象限)与x轴的正半轴相交于M,与y的负半轴相交于N,ABx轴,反比例函数的图象y=
k
x
过A、C两点,直线AC与x轴相交于点E、与y轴相交于点F.
(1)若B(-3,3),直线AC的解析式为y=ax+b.
①求a的值;
②连接OA、OC,若△OAC的面积记为S△OAC,△ABC的面积记为S△ABC,记S=S△ABC-S△OAC,问S是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.
(2)AE与CF是否相等?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:在矩形A0BC中,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.E是边AC上的一个动点(不与A,C重合),过E点的反比例函数y=
k
x
(k>0)
的图象与BC边交于点F.
(1)若△OAE、△OBF的面积分别为S1、S2且S1+S2=2,求k的值;
(2)若OB=4,OA=3,记S=S△OEF-S△ECF问当点E运动到什么位置时,S有最大值,其最大值为多少?
(3)请探索:是否存在这样的点E,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了了解某中学初中三年级175名男学生的身高情况,从中抽测了50名男学生的身高,下面是数据整理与计算的一部分:
(1)在这个问题中,总体和样本各指什么?
(2)填写频率分布表中未完成的部分.






.
x
=164(cm)
频数分布表
分组频数累计频数频率
147.5~151.510.02
151.5~155.520.04
155.5~159.540.08
159.5~163.515
160.32
167.5~171.550.10
171.5~175.50.08
175.5~179.530.06
50
(3)根据数据整理与计算回答下列问题:
①该校初中三年级男学生身高在155.5~159.5(cm)范围内的人数约多少?占多大比例?
②估计该校初中三年级男学生的平均身高.

查看答案和解析>>

同步练习册答案