精英家教网 > 初中数学 > 题目详情
8.如图,AB=AC,∠A=100°,CE平分∠ACD,求∠ECD的度数.

分析 利用等腰三角形的性质得到∠B的度数,再根据三角形外角的性质得出∠ACD的度数,进而利用角平分线的性质得出答案.

解答 解:∵AB=AC,∠A=100°,
∴∠B=(180°-100°)÷2=40°,
∴∠ACD=100°+40°=140°,
∵CE平分∠ACD,
则∠ECD=70°.

点评 此题主要考查了等腰三角形的性质、三角形的外角以及角平分线的性质,根据已知得出∠ACD的度数是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知在Rt△ABC中,AC=BC,∠C=90°,D为边AB的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC、CB(或它们的延长线)于点E、F.
(1)当∠EDF绕点D旋转到DE⊥AC于点E时(如图(1)),易证S△DEF+S△CEF=$\frac{1}{2}$S△ABC
(2)当∠EDF绕点D旋转到DE和AC不垂直时,在图(2)和图(3)这两种情况下,上述结论是否成立?若成立,请给予说明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需说明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,一副三角板的两个直角顶点重合在一起.
(1)比较∠EOM和∠FON的大小,并说明为什么?
(2)∠EON与∠FOM的和是多少度?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.化简$\sqrt{{m}^{2}-4m+4}$+$\sqrt{{m}^{2}+6m+9}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
(1)求AB的长(结果保留根号);
(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.国庆期间人民商场搞优惠促销活动,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款386元,这两种商品原销售价之和为500元.问:这两种商品的原销售价分别为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.已知x=5,|y|=6且x>y,求2x-y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,针对这种海产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,月销售量是450千克,月销售利润是6750元;
(2)设销售单价为每千克x元,月销售利润为y,请你求出y与x之间的函数关系式;
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应该定为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.如图,下列关系式中与图不符的是(  )
A.AD-CD=ACB.AB+BC=ACC.BD-BC=AB+BCD.AD-BD=AC-BC

查看答案和解析>>

同步练习册答案