精英家教网 > 初中数学 > 题目详情

【题目】如图:已知点A、B是反比例函数y=﹣上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为__

【答案】

【解析】过点AADy轴于点D,过点BBEy轴于点E过点AAFBE轴于点F如图所示.

∵∠ACB=90°,

∴∠ACD+BCE=90°,

又∵ADy轴,BEy轴,

∴∠ACD+CAD=90°,BCE+CBE=90°,

∴∠ACD=CBEBCE=CAD

ACDCBE中,由

ACDCBE(ASA).

设点B的坐标为(m,﹣)(m<0),则E(0,﹣),点D(0,3﹣m),点A(﹣﹣3,3﹣m),

∵点A(﹣﹣3,3﹣m)在反比例函数y=﹣上,

,解得:m=3m=2(舍去).

∴点A的坐标为(﹣1,6),B的坐标为(﹣3,2),F的坐标为(﹣1,2),

∴BF=2,AF=4,

故答案为:2

点睛

过点AADy轴于点D,过点BBEy轴于点E过点AAFBE轴于点F,根据角的计算得出ACD=CBEBCE=CAD,由此证出ACDCBE;再设点B的坐标为(m,﹣),由三角形全等找出点A的坐标,将点A的坐标代入到反比例函数解析式中求出m的值,将m的值代入AB点坐标即可得出点AB的坐标,并结合点AB的坐标求出点F的坐标,利用勾股定理即可得出结论.

型】填空
束】
18

【题目】二次函数y=x2+2m+1x+m2﹣1)有最小值﹣2,则m=________

【答案】

【解析】试题解析:∵二次函数有最小值﹣2

y=

解得:m=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.

(1)求函数y=kx+b和y=的表达式;

(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店用1500元人民币购进某种水果销售,过了一周时间,又用3400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的价格贵了2元.

1)该商店第一次购进这种水果多少千克?

2)假设该商店两次购进的这种水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进的这种水果全部售完,利润不低于900元,则每千克这种水果的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

1

2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A(3,﹣6)是二次函数y=ax2上的一点,则这二次函数的解析式是

【答案】y=﹣x2

【解析】

试题分析:将点A(3,﹣6)代入y=ax2,利用待定系数法法求该二次函数的解析式即可﹣6=9a

解得a=﹣因此该二次函数的解析式为:y=﹣x2

考点:待定系数法求二次函数解析式

型】填空
束】
15

【题目】在一个不透明的口袋中装有8个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在40%附近,则口袋中白球可能有________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一张对面互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论不正确的有( ).

A.B.AEC=148°C.BGE=64°D.BFD=116°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB与CD相交于点O, ∠AOM=90°,

(1)如图1,若OC平分∠AOM.求∠AOD的度数;

(2)如图2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料并解答问题:

七年级第一学期课本中有这样一个思考题:你能根据图1中的图形来说明完全平方公式吗?说明如下:

1中的面积可以表示为;图1中的面积又可以表示为;所以这个图形说明了完全平方公式除了完全平方公式可以用图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.

1)请写出图2所表示的代数恒等式:__________________________________

2)请画一个图形,使它的面积能表示

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】14分)如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C30),D34),E04).点ADE上,以A为顶点的抛物线过点C,且对称轴x=1x轴于点B.连接ECAC.点PQ为动点,设运动时间为t秒.

1)填空:点A坐标为   ;抛物线的解析式为   

2)在图①中,若点P在线段OC上从点O向点C1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,PCQ为直角三角形?

3)在图②中,若点P在对称轴上从点A开始向点B1个单位/秒的速度运动,过点PPFAB,交AC于点F,过点FFGAD于点G,交抛物线于点Q,连接AQCQ.当t为何值时,ACQ的面积最大?最大值是多少?

查看答案和解析>>

同步练习册答案